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Abstract

This paper presents a modified environmental production technology which imposes the proper

disposability on the undesirable outputs depending on the underlying technical properties. Then,

aggregate and disaggregate (Russell-type) data envelopment analysis (DEA) models are proposed

to evaluate the energy–economy–environment (3E) efficiency based on the modified technology

(hereafter referred to as the 3E-DEA models). The non-radial Malmquist productivity index is

adapted to model the changes in the 3E productivity over time. A case study of 3E efficiency

analysis for the 30 Chinese administrative regions during 2011–2013 is presented. In general,

Chinese regions did not perform well in terms of 3E goals as only three of them exhibited full

efficiency. It was also found out that the eastern area showed the best 3E performance, whereas

the central area followed suit, thus putting the western area at end of ranking. Still, some regions

in the eastern area showed 3E efficiencies lower than those of some cities in the central and

eastern areas. Anyway, most of the regions showed improving 3E productivity during 2011–2013.
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Introduction

China has seen a great progress in the sense of economic development since the implemen-
tation of the policy of opening up in 1978. Indeed, the economic growth can be represented
by an increase in the gross domestic product (GDP) from 364.52 billion Yuan in 1978 up to
67670.8 billion Yuan in 2015. However, economic growth does not necessarily imply eco-
nomic development let alone sustainable development.1 In the case of China, a remarkable
economic growth is still coexistent with such problems as low-energy efficiency and serious
environmental degradation.2–4

Currently, China is the largest energy-consuming country as well as the largest CO2 emit-
ter. As the production activity is usually a joint process where resource and non-resource
inputs are used to produce desirable outputs along with undesirable ones. Under these cir-
cumstances, low-energy efficiency induces waste of energy resources and excessive emissions
of pollutants. Amidst the increasing resource prices and concerns over the sustainable devel-
opment, resource and environmental development strategies have been the two vital parts of
strategies in the European Union, China, and many other nations.5 Focusing on China, the
aim to build a resource-saving and environment-friendly society has been raised here in the
strategic documents. The gains in energy or environmental efficiency are indeed related to
improvements in the total factor productivity (TFP).6 Therefore, the measures of the TFP
should be adjusted to account for energy and environmental efficiency.7–9 However, if atten-
tion is paid to the aggregated energy and environmental efficiency without involving econom-
ic growth in the analysis, the long-term national development goals might be neglected,
especially in the case of developing countries. The energy–economy–environmental (3E) con-
cept (see e.g. Yi et al.10) offers a rationale for an integrated indicator, which comprises eco-
nomic development, environmental protection, and energy utilization dimensions. Such a
measure can provide the comprehensive information for the government of progress
toward a sustainable economy. By identifying and implementing effective measures, the gov-
ernment can simultaneously encourage reduction in the energy inputs and alleviate the envi-
ronmental pollution while maintaining the economic growth.

Methodologically, the 3E efficiency can be appraised by applying the frontier techniques
relying on the theory of production economics. Among these techniques, data envelopment
analysis (DEA) presented by Charnes et al.11 is an appealing tool to evaluate the energy and
environmental efficiencies of decision-making units (DMUs) as it allows imposing multiple
desirable properties on the underlying technology and the measures of efficiency. Note that
DEA is a nonparametric method and can easily accommodate multiple-inputs multiple-
outputs settings by applying the linear programming.

A number of attempts have been made to incorporate environmental pressures into the
analysis of efficiency and productivity. The studies on modeling the energy–environmental
issues in the confines of the production theory can be divided into four groups.
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In the first group, research ignored the undesirable outputs and only considered energy
consumption as an input. Thus, the environmental efficiency was not taken into consider-
ation. Ramanathan12 employed DEA to compare the energy efficiency of alternate trans-
portation modes. However, the shortcomings of this approach became apparent as ignoring
the undesirable outputs, which are inevitable in most of production technologies did not
allow to fully describe the performance of the DMUs.

In researches falling within the second group, the undesirable outputs started to be
accounted for. F€are et al.13 applied a hyperbolic measure to evaluate the efficiency with
undesirable outputs. The latter approach, however, did not prevail due to its nonlinearity.
Pittman,14 Reinhard et al.,15 and Hailu and Veeman16 treated the undesirable outputs as the
inputs in parametric and non-parametric frameworks focused on industrial and agricultural
applications. Yet it is due to F€are and Grosskopf17 that such a handling of undesirable
outputs cannot reflect the real production process. Therefore, data transformation function
to transform the undesirable outputs into “normal” outputs was put forward. Lovell et al.18

transformed the values of undesirable outputs to their reciprocals. Seiford and Zhu19 included
the undesirable outputs into the DEA models after applying a monotone decreasing trans-
formation on to them. In this way, the modified transformed variables work as a kind of
desirable outputs when measuring the efficiency. Yeh et al.20 applied this transformation when
incorporating the undesirable outputs into analysis. F€are and Grosskopf21 pointed out some
drawbacks of the transformation-based approach and showed that it might produce awkward
results; they also suggested another approach based on F€are et al.13 to model the environ-
mental technology. They proposed to impose the weak disposability on all the undesirable
outputs to construct the environmental technology. Seiford and Zhu22 responded to F€are and
Grosskopf by pointing out that their directional distance function (DDF) is linked to the
weighted additive model. The methods proposed by F€are and Grosskopf21 have been gener-
ally accepted in the literature (however, Kuosmanen23 offered a modified weak disposability
technology). Zhou et al.24 proposed the slacks-based efficiency measures to model the envi-
ronmental efficiency based on the environmental technology. Zhou et al.25 employed the non-
radial DEA to measure the environmental efficiency with respect to the environmental tech-
nology. Zhou et al.26 presented the different environmental DEA models under different
returns-to-scale (RTS) assumptions and environmental technologies. Bi et al.27 studied the
effects on the energy efficiency from the environmental regulation with the slacks-based
model. Note that Yang and Pollitt28 pointed that there is a necessity to impose the proper
disposability on the undesirable outputs depending on their technical features, which makes a
significant difference to efficiency evaluation. From this viewpoint, it is inappropriate to
impose the weak disposability on all the undesirable outputs.

Literature in the third group explicitly focuses on input use efficiency. As nonrenewable
energy resources can be exhausted, the balance between economic growth and resource
depletion needs to be maintained. Therefore, the inputs can be divided into energy and
non-energy ones in efficiency and productivity analysis to reveal the trends in the energy
efficiency. The utilization of energy resources can be improved by systematically applying
such frameworks. Zhou and Ang29 used the radial and non-radial DEA models to measure
the energy efficiency of 21 Organization for Economic Co-operation and Development
(OECD) countries by separating the energy inputs and the other ones. However, such an
approach does not offer an integrated measure of energy and environmental efficiency.

As regards the fourth group, some integrated efficiency indicators encompassing both energy
and environmental improvements have been presented. Bian and Yang30 analyzed the energy–
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environmental efficiency for the 30 Chinese provinces. They presented several DEAmodels and
used Shannon’s entropy when constructing the weights. Shi et al.31 developed three DEA
models under different assumptions regarding RTS to measure the energy–environmental effi-
ciency in Chinese regional industries. Wang et al.32 estimated the environmental efficiency,
economic efficiency, economic–environmental efficiency, and two-stage efficiency for different
provinces in China. Wang et al.33 conducted the dynamic evaluation of energy and environ-
mental efficiency through the window DEA. Iftikhar et al.34 studied the energy and CO2 emis-
sion efficiency in major economies by employing a slacks-based model. For a more detailed
information about the development of DEA in energy–environmental areas, one can refer to
the reviews by Zhou et al.,35 Sahoo et al.,36 and Zhou et al.37

In this study, we propose a 3E efficiency indicator to offer the decision makers’ compre-
hensive information in regards to implementations of the goals of sustainable development.
More specifically, this paper proposes both aggregate and disaggregate (Russell-type) non-
radial 3E-DEA models. In order to facilitate dynamic analysis, we construct the Malmquist
index based on the 3E-DEA, which identifies DMU performance over time. Indeed, the
earlier literature28,38,39 focused on aggregate measures and did not discuss the measures of
the productivity change. The empirical analysis focuses on the 3E performance of the 30
Chinese provinces throughout 2011–2013.

The rest of the paper is organized as follows. Methodology section presents the modified
technology considering where the undesirable outputs face different disposability assump-
tions depending on technical properties of their abatement, the aggregate and disaggregate
(Russell-type) 3E-DEA models based on the modified technology, and the Malmquist 3E
productivity index. Regional 3E efficiency analysis in China section presents the data sour-
ces and variables used for the empirical analysis and then employs the Russell-type 3E-DEA
model to evaluate the Chinese regional 3E efficiency for the period 2011–2013. In addition,
the Malmquist index is employed to analyze the developments in productivity across the
provinces. Finally, conclusions are drawn in Conclusions section.

Methodology

The modified environmental DEA technology

Yang and Pollitt28 argued that there is a need for assuming different disposability among
undesirable and desirable outputs depending on the underlying technical characteristics.
Later on, Chen et al.39 proposed a generalizing model where the degree of abatement can
be specified. In this paper, we follow the mixed disposability approach and offer some
additional measures of efficiency and productivity change.

When modeling the economic activity, we suppose there are n independent homogenous
DMUs, indexed over j ¼ 1; 2; . . . ; n and denoted as DMUj. Each DMU consumes (possibly)
multiple types of inputs to produce (possibly) multiple types of outputs. During the production
process, both the desirable and undesirable outputs are dispensed. In addition, the inputs are
categorized into energy inputs and non-energy inputs to consider the energy efficiency of each
DMU. Here the vectors of energy inputs, non-energy inputs, desirable outputs, undesirable
outputs are denoted by X ¼ ðx1; x2; . . . ; xmÞ, E ¼ ðe1; e2; . . . ; ekÞ, Yðy1; y2; . . . ; ysÞ, and
U ¼ ðu1; u2; . . . ; utÞ. The production process (production possibilities) can be described by
means of technology set T ¼ fðx; e; y; uÞ : ðx; eÞ can produce ðy; uÞg. T is assumed to a
closed and bounded set, which guarantees that finite inputs can only produce finite outputs.
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What is more, the energy inputs, non-energy inputs, and desirable outputs are assumed to be

strongly disposable. In order to model the process with the desirable and undesirable outputs

produced simultaneously, F€are et al.13 imposed the following two assumptions on technologyT:
1. Outputs are weakly disposable: if 0 � h � 1 and ðx; e; y; uÞ 2 T, then

ðx; e; hy; huÞ 2 T. This implies that the proportional reduction in the desirable and undesir-

able outputs is possible.
2. Desirable and undesirable outputs are null-joint: if ðx; e; y; uÞ 2 T, u ¼ 0, then y ¼ 0.

This implies that the only way to completely curb the generation of undesirable outputs is to

halt the production.
Following this approach, the same assumption of weak disposability is applied with respect

to each of the undesirable outputs, which might contradict the technical properties of the

abatement technologies. Indeed, different undesirable outputs might have different abatement

options. If one treats them equally, it might contradict the real situation. We can take the coal-

fired power plants as an example. During the process of electricity generation there, both CO2

and SO2 are emitted. If people want to decrease the amount of them, the generation of the

electricity would be decreased, whichmeans the costs of electricity per kWhwould be increased.

As for CO2, if 90% of its emission is decreased, the electricity generation might be reduced by

90% as well (depending on the direction of optimization). For this type of emissions, one can be

imposed the weak disposability. Therefore, if one models CO2 emission along with some other

undesirable outputs with similar technical properties, weak disposability may be imposed on

both of them.As for SO2, the case would be different. It is possible to dispose ofmost of the SO2

emission by using the desulphurization equipment with loss in the electricity generation of just

several percents, which is inconsistent with the assumption of the weak disposability. Therefore,

some undesirable outputs might not be suitable to be modeled under the assumption of the

weak disposability; instead, the strong disposability should be imposed on them. All in all, the

undesirable outputs might face different types of disposability depending on the associated

technical properties. Considering these findings, the modified environmental DEA technology

under the assumption of constant RTS can be given as:

TR ¼ fðx; e; y; uÞ :
Xn
j¼1

kjxij � xi; i ¼ 1; . . . ;m;

Xn
j¼1

kjelj � el; l ¼ 1; . . . ; k;

Xn
j¼1

kjyrj � yr; r ¼ 1; . . . ; s;

Xn
j¼1

kjuwb1j ¼ uwb1 ; b1 ¼ 1; . . . ; t1;

Xn
j¼1

kjusb2j � usb2 ; b2 ¼ 1; . . . ; t2g

(1)

where xij represents the ith non-energy input consumed by DMUj, elj indicates the lth energy

input consumed by DMUj and yrj stands for the rth desirable output produced by DMUj.
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The undesirable outputs are organized into the two groups according to the underlying
technical properties of the associated abatement technologies. In this setting, uwb1j represents
the b1th undesirable output associated with the weak disposability assumption produced by
DMUj, whereas u

s
b2j

denotes the b2th undesirable output associated with the strong dispos-
ability assumption. Note that t1 þ t2 ¼ t.

Based on the modified environmental DEA technology, we further propose the 3E-DEA
models to measure the 3E efficiency and productivity change.

Aggregate 3E-DEA model

On the basis of the revised environmental DEA technology, we first present the aggregate
3E-DEA model. We term this model as the aggregate one as the input and output variables
are scaled by different factors, yet these factors are not variable-specific. The aggregate
model is formulated as follows:

3EE1 ¼ min
k1uþ k2u

g

s:t:
Xn
j¼1

kjxij þ sx
�

i ¼ xio; i ¼ 1; . . . ;m;

Xn
j¼1

kjelj þ se
�
l ¼ /elo; l ¼ 1; . . . ; k;

Xn
j¼1

kjyrj � sy
þ

r ¼ gyro; r ¼ 1; . . . ; s;

Xn
j¼1

kjuwb1j ¼ uuwb1o; b1 ¼ 1; . . . ; t1;

Xn
j¼1

kjusb2j þ su
�
b2

¼ uusb2o; b2 ¼ 1; . . . ; t2;

0 < / � 1; g � 1; 0 < u � 1;

kj; sx
�

i ; se
�
l ; sy

þ
r ; su

�
b2

� 0

(2)

where subscript o indicates DMUo is evaluated here, k1 and k2 are the two weights set a
priori so that k1 þ k2 ¼ 1, sx

�
i , se

�
l , sy

þ
r , and su

�
b2

are the slack variables associated with the
non-energy inputs, energy inputs, desirable outputs, and undesirable outputs, respectively,
satisfying the strong disposability. It is clear that objective function of Model (2) seeks to
proportionally decrease the energy inputs and undesirable outputs, and increase the desired
outputs for a given amount of non-energy inputs. The DMU with a higher value in 3EE1

performs better in regards to the 3E approach if compared to the other DMUs. The index is
a standardized one, so a DMU with 3EE1 ¼ 1 is located on the production frontier and
serves as a peer for the benchmarking. Note that the presence of the three coefficients in
equation (2) allows for more flexibility in moving toward the production frontier: energy
inputs, desirable outputs, and undesirable outputs are scaled independently.
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Model (2) is a fractional programming problem. Therefore, one needs to transform it into

a linear programming problem for the computational convenience. The linearized model is
given as follows:

3EE2 ¼ mink1l1 þ k2l2

s:t:
Xn
j¼1

kjxij þ sx
�

i ¼ bxio; i ¼ 1; . . . ;m;

Xn
j¼1

kjelj þ se
�
l ¼ l1elo; l ¼ 1; . . . ; k;

Xn
j¼1

kjyrj � sy
þ

r ¼ yro; r ¼ 1; . . . ; s;

Xn
j¼1

kjuwb1j ¼ l2u
w
b1o

; b1 ¼ 1; . . . ; t1;

Xn
j¼1

kjusb2j þ su
�

b2
¼ l2u

s
b2o

; b2 ¼ 1; . . . ; t2;

0 < b � 1; 0 < l1 � 1; 0 < l2 � 1;

kj; sx
�

i ; se
�
l ; sy

þ
r ; su

�
b2

� 0

(3)

The equivalence between Models (2) and (3) can be established by dividing the two

sides of each constraint in Model (2) by g and denoting 1
g ¼ b, /b ¼ l1, ub ¼ l2, and

kjb ¼ k0j.
Besides an increased computational convenience, indicator 3EE2 is still restricted to fall

within the interval bounded by zero and unity, which increases its interpretability.

Therefore, the 3E efficiency can be analyzed by means of Model (3).
Definition 1. Let /0;u0 and g0 be the optimal values of Model (2). If /0;u0 and g0 are all

equal to unity and all the slack variables are zero, the DMU is 3E-DEA efficient. Then,

indicator 3EE1 equals unity.
However, there are some shortcomings pertinent to Models (2) and (3). Specifically,

these models ignore the mix inefficiency while adjusting all the desirable outputs or

energy inputs by the same proportion. This might mask certain potential improvement

during the efficiency analysis. In addition, such an approach might reduce the discriminating

power of the models and a number of DMUs might appear with 3EE equal to unity. This
would make the ranking of the DMUs according to their 3E performance rather compli-

cated. Therefore, we present the disaggregate Russell-type 3E-DEA model in the following

subsection.

Russell-type 3E-DEA model

In order to account for inefficiencies arising due to input/output mix, we allow the
scaling factors to vary across specific variables. By doing this, we arrive a
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Russell-type measure.7,40,41 The disaggregate Russell-type 3E-DEA model is then defined as
follows:

3EE3 ¼ min

Xk

l¼1
k1l /l þ

Xt1

b1¼1
k2b1ub1 þ

Xt2

b2¼1
k3b2 ~ub2Xs

r¼1
k4rgr

s:t:
Xn
j¼1

kjxij þ sx
�

i ¼ xio; i ¼ 1; . . . ;m;

Xn
j¼1

kjelj þ se
�
l ¼ /lelo; l ¼ 1; . . . ; k;

Xn
j¼1

kjyrj � sy
þ
r ¼ gryro; r ¼ 1; . . . ; s;

Xn
j¼1

kjuwb1j ¼ ub1u
w
b1o

; b1 ¼ 1; . . . ; t1;

Xn
j¼1

kjusb2j þ su
�
b2

¼ ~ub2u
s
b2o

; b2 ¼ 1; . . . ; t2;

0 < /l � 1; gr � 1; 0 < ub1 � 1; 0 < ~ub2 � 1;

kj; sx
�

i ; se
�
l ; sy

þ
r ; su

�
b2

� 0

(4)

The meaning of the notations here is basically the same as it is for Model (2). Here we
have four kinds of user-specified weights to adjust the energy inputs, desirable outputs, and

undesirable outputs. The constraints for the weights are
Xk

l¼1
k1l þ

Xt1

b1¼1
k2b1 þ

Xt2

b2¼1
k3b2

¼ 1 and
Xs

r¼1
k4r ¼ 1. The index is also a standardized one, locating the efficiency scores in

between zero and unity.
By altering the weights, the decision makers can adjust the importance of energy inputs,

desirable outputs, and undesirable outputs in the construction of the 3E efficiency indicator.
In this context, /l represents the relative propensity of a decision maker to limit the use of
the lth energy input. The higher weights indicate that the decision makers want to reduce the
use of a certain input to a higher extent. Similarly, gr indicates the relative importance of
increasing the rth desirable output from the viewpoint of the decision maker. Therefore,
higher weights imply that the decision maker seeks to increase production in a certain
output. Finally, ub1 and ~ub2 imply the relative importance of curbing the undesirable out-
puts. Specifically, a higher weight associated with a certain undesirable output implies higher
priority in reduction of a certain emission. The model is sensitive to whether the DMU
increases the desirable outputs at the cost of the environmental pollution. Even if the DMU
performs well in production of the desired outputs, low environmental performance would
damper the 3E efficiency. Only DMUs operating in lines with the sustainable development
approach can secure high levels of the 3E efficiency.
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We can also obtain the dual (multiplier) form of Model (4) without the slack variables.
For the details on transformation to the dual multiplier form, one can refer to F€are and
Primont.42 The dual model is defined as follows:

3EE3 ¼ min
Xm
i¼1

aixio

s:t:
Xm
i¼1

aixij þ
Xk
l¼1

dlelj þ
Xt1
b1¼1

gb1u
w
b1j

þ
Xt2
b2¼1

fb2u
s
b2j

�
Xs
r¼1

cryrj;

k1l � dlelo; k
2
b1
� gb1u

w
b1o

; k3b2 � fb2u
s
b2o

; k4r � cryro;

ai; dl; gb1 ; fb2 ; cr � 0

(5)

Here, we put some additive constraints on /l; gr;ub1 and ~ub2 . Therefore, we force the
inefficient DMUs to increase the desirable outputs, decrease the undesirable outputs and
energy inputs when moving toward the production frontier. If we do not put the constraints
on /l; gr;ub1 and ~ub2 , the targets for the inefficient DMUs might be set by decreasing both
the inputs and/or outputs. In other words, a DMU might decrease its undesirable outputs,
energy inputs, and desirable outputs in order to become efficient, i.e. improve its 3E per-
formance on the account of the desired outputs. With these constraints, the projection on
the production frontier can be considered as a Pareto improvement.

By using the preset weights, we can specify the upper bounds of the linear combination of
the energy inputs, the undesirable outputs faced by DMUo. The lower bound of the linear
combination of the desired outputs can also be set in this manner. Compared to the output-
oriented Charnes-Cooper-Rhodes model, the difference lies in that there are more con-
straints on the linear combinations of the inputs and outputs for DMUo. The dual (multi-
plier) model objective function also gives the lower bound of that for Model (4).

Again, Model (4) is a fractional programming problem. Therefore, we can transform it
into an equivalent linear programming problem for computational convenience. As for the
principles underlying the transformation into the equivalent linear programming problem,
one can follow the logics outlined for Model (3).

Definition 2. Let /0
l, g

0
r, u

0
b1 , and ~u0

b2 be the optimal values of Model (4). If /0
l, g

0
r, u

0
b1 ,

and ~/
0
b2 are all equal to unity in Model (4), and all the slack variables are zero, then DMUo

is referred to as 3E-DEA efficient.
If /0

l, g
0
r, u

0
b1 , and ~u0

b2 all equal to unity, and all the slacks variables are zero, the energy
inputs and undesirable outputs of the DMU cannot be decreased, and the desirable outputs
cannot be increased. Hereby, the 3EE3 is unity and the DMU is 3E efficient.

If /1 ¼ � � � ¼ /k; g1 ¼ � � � ¼ gs;u1 ¼ � � � ¼ ut1 and ~u1 ¼ � � � ¼ ~ut2 , Model (4) boils down
to Model (2). Therefore, the objective value of Model (4) is smaller than that of Model (2),
which can increase the discriminating power of Model (4). Besides these properties, another
advantage of Model (4) is that it can adjust all the energy inputs, desirable outputs, and
undesirable outputs by different proportions thereby adhering to the realistic economic or
political considerations. Therefore, inefficient DMUs might be associated with more realistic
targets.
Definition 3. Let ul

0, gr
0, /b1

0, ~/b2

0
, sx�i 0; se�l 0; syþr 0, and su�b2 0 be the optimal solutions of

Model (5). Let bxio ¼ xio � sx�i 0; belo ¼ /l
0elo � se�l 0; byro ¼ gr

0yro þ syþr 0; bub1o ¼ ub1
0uwb1o; bub2o ¼
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~ub2
0usb2o � su�b2 0, then ðbxio; belo; byro; bub1o; bub2oÞ is called the projection point of DMUo based on

the modified environmental technology.
In order to prove that the projection point is 3E-DEA efficient, we introduce the follow-

ing lemma.
Lemma 1. If ðxio; elo; yro; uwb1o; usb2oÞ is the Pareto optimal solution of the multi-objective

programming problem, DMUo is 3E-DEA efficient.
Here, the multi-objective programming problem is

min FðX;E;Y;Uw
b1
;Us

b2
Þ

s:t: ðX;E;Y;Uw
b1
;Us

b2
Þ 2 TR

(

In this formulation, FðX;E;Y;Uw
b1
;Us

b2
Þ ¼ ðX;E;�Y;Uw

b1
;Us

b2
ÞT.

Theorem 1. The projection point of DMUo is 3E-DEA efficient.
Proof. Based on Definition 3, we have

bxio ¼
Xn
j¼1

kj
0xij (6)

belo ¼Xn
j¼1

kj
0elj (7)

byro ¼Xn
j¼1

kj
0yrj (8)

buwb1o ¼Xn
j¼1

kj
0uwb1j (9)

busb2o ¼Xn
j¼1

kj

0
usb2j (10)

where kj
0, j ¼ 1; 2; � � � ; n, is the optimal solution of Model (4) when ðxio; elo; yro; uwb1o; usb2oÞ is

evaluated.
As for the first constraint of Model (5), we have the following equation based on the

supplementary Karush-Kuhn-Tucker condition:

k0j
Xm
i¼1

a0ixij þ
Xk
l¼1

d0lelj þ
Xt1
b1¼1

g0b1u
w
b1j

þ
Xt2
b2¼1

f 0b2u
s
b2j

�
Xs
r¼1

c0ryrj

 !
¼ 0; j ¼ 1; 2; . . . ; n

(11)

where ða0i; d0l; c0r; g0b1 ; f0b2Þ is the optimal solution of Model (5) when ðxio; elo; yro; uwb1o; usb2oÞ is
evaluated.
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If we add the n equations in equation (11) together, we have

Xm
i¼1

a0ibxio þ
Xk
l¼1

d0lbelo þXt1
b1¼1

g0b1buwb1o þXt2
b2¼1

f0b2busb2o �Xs
r¼1

c0rbyro ¼ 0 (12)

Then, 8ðx; e; y; uÞ 2 TR, we have

Xn
j¼1

kjxij � xi; i ¼ 1; . . . ;m (13)

Xn
j¼1

kjelj � el; l ¼ 1; . . . ; k (14)

Xn
j¼1

kjyrj � yr; r ¼ 1; . . . ; s (15)

Xn
j¼1

kjubj � ub; b ¼ 1; . . . ; t (16)

Note that we do not make a distinction between the undesirable outputs following the
strong disposability assumption and those following the weak disposability assumption
here.

We also have

Xm
i¼1

a0ixij þ
Xk
l¼1

d0lelj þ
Xt1
b1¼1

g0b1u
w
b1j

þ
Xt2
b2¼1

f0b2u
s
b2j

�
Xs
r¼1

c0ryrj � 0 (17)

Then we can get

Xm
i¼1

a0ixi þ
Xk
l¼1

d0lel þ
Xt1
b1¼1

g0b1u
w
b1
þ
Xt2
b2¼1

f0b2u
s
b2
�
Xs
r¼1

c0ryr

�
Xm
i¼1

a0i
Xn
j¼1

kjxij þ
Xk
l¼1

d0l
Xn
j¼1

kjelj þ
Xt1
b1¼1

g0b1
Xn
j¼1

kju
w
b1j

þ
Xt2
b2¼1

f0b2
Xn
j¼1

kju
s
b2j

�
Xs
r¼1

c0r
Xn
j¼1

kjyrj

¼
Xn
j¼1

kjð
Xm
i¼1

a0ixij þ
Xk
l¼1

d0lelj þ
Xt1
b1¼1

g0b1u
w
b1j

þ
Xt2
b2¼1

f0b2u
s
b2j

�
Xs
r¼1

c0ryrjÞ

¼
Xm
i¼1

a0ibxi0 þ
Xk
l¼1

d0lbel0 þXt1
b1¼1

g0b1buwb1o þXt2
b2¼1

f0b2busb2o �Xs
r¼1

c0rbyro � 0

(18)
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If ðbxio; belo; byro; buwb1o; busb2oÞ is not the Pareto optimal solution of multi-objective program-

ming, there exists ðx0; e0; y0; u0wb1 ; u0sb2Þ 2 TR; x
0 � bx; e0 � be; y0 � by; u0wb1 ¼ buwb1 ; u0sb2 � busb2 .

Because a0i > 0; d0l > 0; g0b1 > 0; f0b2 > 0; c0r > 0; we have

Xm
i¼1

a0ibxio þ
Xk
l¼1

d0lbelo þXt1
b1¼1

g0b1buwb1o þXt2
b2¼1

f0b2busb2o �Xs
r¼1

c0rbyro >
Xm
i¼1

a0ix0i þ
Xk
l¼1

d0le0l þ
Xt1
b1¼1

g0b1u
0w
b1
þ
Xt2
b2¼1

f0b2u
0s
b2
�
Xs
r¼1

c0ry0r

(19)

It is in contradiction with the previous proof. Therefore, ðbxio; belo; byro; buwb1o; busb2oÞ is the

Pareto optimal solution of multi-objective programming. According to Lemma 1, ðbxio; belo;byro; buwb1o; busb2oÞ is 3E-DEA efficient.

Malmquist 3E productivity index

Model (4) can be used to evaluate the 3E efficiency of a certain DMU. If one is interested in

the dynamics of the 3E performance of a certain DMU, Model (4) cannot offer proper

information about it as different periods have different frontiers and peer DMUs. What is

more, the sources of changes in productivity cannot be revealed. In order to tackle this

problem, the Malmquist 3E productivity index can be constructed following F€are et al.43

Let s and sþ 1 be the two consecutive time periods. The measurement of productivity

involves both contemporaneous and mixed-period measures of inefficiency. Looking at

observation from period s, 3EEsðxso; eso; yso; usoÞ and 3EEsþ1ðxso; eso; yso; usoÞ are the 3E efficiency

measures relative to the frontiers of periods s and sþ 1, respectively. Similarly, the contem-

poraneous and mixed-period efficiencies for observation form period sþ 1 are defined as 3

EEsþ1ðxsþ1
o ; esþ1

o ; ysþ1
o ; usþ1

o Þ and 3EEsðxsþ1
o ; esþ1

o ; ysþ1
o ; usþ1

o Þ, respectively. We can then con-

struct the Malmquist 3E productivity index for DMUo (M3EPIo) as follows:

M3EPIo ¼
�
3EPIsðxsþ1

o ; esþ1
o ; ysþ1

o ; usþ1
o Þ 3EPIsþ1ðxsþ1

o ; esþ1
o ; ysþ1

o ; usþ1
o Þ

3EPIsðxso; eso; yso; usoÞ 3EPIsþ1ðxso; eso; yso; usoÞ
�1=2

(20)

One can assess the change in 3E performance for DMUo across the two different periods

by considering the value of M3EPIo: If M3EPIo is higher than unity, a DMU has improved

in terms of the 3E performance. On the contrary, the values ofM3EPIo below unity indicate

that a DMU has deteriorated in this regard. Obviously, M3EPIo equal to unity indicates no

change in productivity. The M3EPIo index can be decomposed into two parts to measure

the contributions of the efficiency change (the first term) and the technological change (the

second term):

M3EPIo ¼ 3EPImðxmo ; emo ; ymo ; umo Þ
3EPInðxno; eno; yno; unoÞ

�
�
3EPInðxmo ; emo ; ymo ; umo Þ 3EPInðxno; eno; yno; unoÞ
3EPImðxmo ; emo ; ymo ; umo Þ 3EPImðxno; eno; yno; unoÞ

�1=2
(21)
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Regional 3E efficiency analysis in China

In this section, the Russell-type 3E-DEA model is employed to measure the 3E efficiency for

the 30 regions in the mainland China for the years 2011–2013. We first present the data used

and define the regions considered in the analysis. Then, we focus on the empirical results

(efficiency and productivity change).

Data used

In order to model the production process, the labor force and capital stock are employed as

the two non-energy inputs. Primary energy consumption is employed as the energy input.

The GDP works as the only desirable output. As regards the undesirable outputs, we choose

the emissions of CO2, SO2, and NOX. Owing to the technical properties of the abatement

technologies, the weak disposability is imposed on CO2, whereas the strong disposability is

imposed on SO2 and NOX.
The data on labor force, capital, primary energy consumption (including coal, oil, and

natural gas), GDP, SO2, and NOX emissions are collected from China Statistical Yearbook,

China Energy Statistical Yearbook and China Statistical Yearbook on Environment from

2011 to 2013. The capital stock is not directly available from the yearbook and, thus, was

estimated by applying the perpetual inventory method. The long-run growth rates in invest-

ments (gross fixed capital formation) were approximated by using time series for 2000–2013.

The procedure outlined by Liu et al.44 was applied with province-specific rates of depreci-

ation taken from Wu et al.45 The amounts of CO2 emissions are not available from the

yearbooks, so we estimate it on the basis of data on fuel-mix following Liu et al.46 Table 1

presents the descriptives for the input and output variables.

Description of the regions of China

The study covers the 30 regions of the mainland China with exception of Tibet due to the

missing data. According to the geographical location, the 30 regions are categorized into

three areas, namely the eastern, central, and western areas.
The eastern area includes three municipalities (Beijing, Tianjin, and Shanghai) and eight

coastal provinces (Hebei, Liaoning, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and

Hainan). It shows the fastest economic development among the three areas and GDP gen-

erated here comprises more than a half of the national GDP. This region has been attracting

substantial amounts of foreign investments, which contribute to further economic

development.
The central area covers 10 inland provinces (Shanxi, Inner Mongolia, Jilin, Heilongjiang,

Anhui, Jiangxi, Henan, Hubei, Hunan, and Guangxi). The economic development here is

slower than that in the eastern area but still more robust than that in the western area. This

includes two famous heavy industry bases (Heilongjiang and Jilin) and two key energy

industry provinces (Inner Mongolia and Shanxi). Given its industrial structure, this area

is energy-consuming emissions of waste gas due to its industry background.
The western area is made up of one municipality (Chongqing) and nine provinces

(Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, and Tibet).

This area has seen the lowest rates of economic growth among the three areas. However,
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this area is endowed with natural resources and well-protected habitats. The average input
and output values for the three areas are given in Table 2.

It can be seen that the labor force, capital stock, generation GDP, and CO2 emissions
concentrate in the eastern area. However, SO2 and NOX emission mainly concentrates in the
central area due to the presence of heavy industry there. See, for instance, Cheng et al.47 for
discussion on differences in the industrial structure across the regions of China.

Results

We apply the 3E-DEA model to analyze the performance of the Chinese regions. Model (4)
can be implemented once the weights of the Russell-type measure are imputed. In our case,
the weights of the undesirable outputs and the energy inputs are set to 0.25, which indicates
that the decision makers treat them equally important, i.e. reducing either of the undesirable
outputs or the energy input is equally important. As there is a single desirable output in the
model, the weight for GDP is set to unity. Table 3 shows the 3E efficiencies based on the
Russell-type model for the 30 regions during 2011–2013.

In general, Chinese regions did not perform well in the sense of 3E efficiency. Indeed,
Beijing, Shandong, and Hubei appeared as the only 3E-efficient regions. On average, the
eastern area showed the highest average 3E efficiency if contrasted to the other areas. The
second-highest average 3E efficiency was observed for the central area. However, there were
some exceptions noticed. Even though Hubei and Hunan are located in the central area and

Table 1. Descriptive statistics for inputs and outputs.

Year

Labor force

(million

workers)

Capital stock

(billion RMB)

Primary energy

consumption

(million tons of

coal equivalent)

GDP

(billion

RMB)

CO2

(million

tons)

SO2

(million

tons)

NOx

(million

tons)

2011 Min 18.7 516.3 16.0 60.6 34.4 0.004 0.041

Max 60.7 26,749.7 371.3 5321.0 870.1 1.827 1.801

Mean 26.1 9865.6 140.8 1682.1 318.6 0.715 0.776

2012 Min 18.6 670.5 16.9 70.1 36.3 0.004 0.044

Max 59.3 31,256.0 389.0 5706.8 913.3 1.749 1.761

Mean 25.5 11,890.0 147.7 1859.8 327.7 0.683 0.754

2013 Min 18.4 876.0 17.2 81.6 36.7 0.004 0.044

Max 59.1 36,789.1 35,358.0 6247.5 867.3 1.645 1.652

Mean 25.3 14,214.2 142.5 2046.3 325.3 0.659 0.719

Table 2. Regional differences of inputs and outputs, average values for 2011–2013.

Area

Average

labor force

(million

workers)

Average

capital stock

(billion RMB)

Average primary

energy consumption

(million tons of

coal equivalent)

Average

GDP

(billion

RMB)

Average CO2

emissions

(million tons)

Average SO2

emission

(million tons)

Average NOx

emissions

(million tons)

Eastern area 28.1 14,800.2 148.7 2050.1 328 0.866 0.78

Central area 26.2 11,800.1 140.2 1800.3 320 0.887 0.76

Western area 23.1 9600.3 136.3 1600.3 316 0.533 0.70
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Chongqing is located in the western area, their performance was better than that of Hebei
which is located in the best-performing eastern area. These findings can be partially
explained by the fact that pollution-intensive industries have been moved from Beijing to
Hebei. Therefore, serious environmental problems in Hebei undermined its E3 efficiency in
spite of high GDP generated there. Another interesting example is Sichuan located in the
western area. The latter city showed better E3 performance than some cities in the central
area. This implies Sichuan managed to simultaneously ensure the environmental protection
and economic growth, which contributed to increase in the 3E efficiency. Ningxia that is
located in the western area performed the worst in terms of the 3E efficiency among all the
regions. Though Ningxia ensured protection of its environment quite well, sluggish slow
economic development there negatively influenced the 3E efficiency. Therefore, the 3E

Table 3. 3E efficiencies for Chinese regions during 2011–2013.

Regions and areas 2011 2012 2013

Eastern area Beijing 1 1 1

Tianjin 0.482 0.513 0.507

Hebei 0.288 0.271 0.203

Liaoning 0.209 0.205 0.193

Shanghai 0.255 0.252 0.237

Jiangsu 0.355 0.362 0.363

Zhejiang 0.280 0.290 0.290

Fujian 0.337 0.281 0.238

Shandong 1 1 1

Guangdong 0.466 0.463 0.443

Hainan 0.515 0.513 0.479

Average 0.471 0.468 0.450

Central area Shanxi 0.319 0.317 0.296

Inner Mongolia 0.466 0.479 0.460

Jilin 0.369 0.372 0.337

Heilongjiang 0.363 0.378 0.376

Anhui 0.278 0.274 0.265

Jiangxi 0.337 0.345 0.361

Henan 0.361 0.378 0.379

Hubei 1 1 1

Hunan 0.351 0.343 0.323

Guangxi 0.465 0.452 0.428

Average 0.431 0.434 0.423

Western area Chongqing 0.307 0.332 0.338

Sichuan 0.335 0.340 0.330

Guizhou 0.223 0.204 0.188

Yunnan 0.274 0.255 0.232

Shaanxi 0.264 0.262 0.249

Gansu 0.230 0.203 0.187

Qinghai 0.255 0.259 0.250

Ningxia 0.148 0.147 0.141

Xinjiang 0.248 0.225 0.200

Average 0.253 0.247 0.235

National average 0.393 0.391 0.376
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efficiency indicator identified the best practice and the pathway for sustainable development
at the regional level.

Next, we use the Malmquist 3E index to analyze the change in 3E productivity across the
regions. Note that Beijing, Shandong, and Hubei are excluded from the analysis as they
have always been on the production frontier. The results for the periods of 2011–2012 and
2012–2013 are presented in Table 4.

According to Table 4, a number of regions progressed in terms of the 3E productivity
during 2011–2012 and 2012–2013. Looking at the period of 2011–2012, the technological
change has contributed to the improvement in the 3E productivity of Chinese regions.
Indeed, the same trend prevailed for 2012–2013. In order to identify the directions for
improvement, we can focus on some specific regions. Hebei belongs to the eastern area
and managed to improve its 3E productivity during 2011–2012. However, the 3E

Table 4. 3E Malmquist index for Chinese regions, 2011–2013.

Regions and areas

2011–2012 2012–2013

M3EPI EFFCH TECH M3EPI EFFCH TECH

Eastern area Tianjin 1.161 1.065 1.09 1.14 0.989 1.153

Hebei 1.165 0.94 1.239 0.934 0.749 1.247

Liaoning 1.152 0.979 1.177 1.111 0.945 1.175

Shanghai 1.265 0.985 1.284 1.298 0.942 1.377

Jiangsu 1.351 1.02 1.324 1.364 1.003 1.36

Zhejiang 1.323 1.038 1.275 1.292 1 1.292

Fujian 0.974 0.833 1.17 1.058 0.849 1.247

Guangdong 1.216 0.993 1.224 1.159 0.957 1.211

Hainan 1.393 0.996 1.398 1.185 0.934 1.269

Geometric mean 1.216 0.981 1.239 1.164 0.926 1.257

Central area Shanxi 1.201 0.992 1.21 1.152 0.933 1.234

Inner Mongolia 1.207 1.028 1.174 1.071 0.961 1.114

Jilin 1.224 1.007 1.215 1.077 0.906 1.188

Heilongjiang 1.262 1.043 1.21 1.361 0.993 1.37

Anhui 1.228 0.987 1.245 1.211 0.966 1.254

Jiangxi 1.298 1.022 1.27 1.429 1.047 1.365

Henan 1.358 1.049 1.294 1.303 1.001 1.302

Hunan 1.164 0.978 1.19 1.167 0.942 1.239

Guangxi 1.091 0.97 1.124 1.075 0.949 1.134

Geometric mean 1.224 1.008 1.214 1.199 0.966 1.241

Western area Chongqing 1.368 1.079 1.267 1.407 1.02 1.38

Sichuan 1.267 1.014 1.25 1.245 0.971 1.282

Guizhou 1.147 0.916 1.253 1.228 0.921 1.334

Yunnan 1.154 0.933 1.236 1.189 0.908 1.309

Shaanxi 1.196 0.991 1.207 1.185 0.95 1.247

Gansu 1.061 0.884 1.2 1.128 0.918 1.228

Qinghai 1.261 1.017 1.24 1.222 0.964 1.268

Ningxia 1.277 0.994 1.284 1.237 0.956 1.293

Xinjiang 1.027 0.908 1.131 1.022 0.888 1.151

Geometric mean 1.191 0.969 1.229 1.203 0.943 1.275

Geometric mean 1.21 0.985 1.227 1.189 0.945 1.258
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productivity decreased in the subsequent period of 2012–2013 due to unfavorable efficiency

change. This might be related to increased environmental pressures due to establishment of

factories and associated pollution here. All the eastern regions managed to improve their 3E

during 2011–2013, which indicates the policies carried out by the local governments con-

formed to the rules of sustainable development. Note that this region had seen an economic

expansion without serious environmental considerations before, yet the present results imply

this trend has been reversed. Therefore, further development corresponds to the concept of

3E and might render increase in the well-being of the population. All the regions in the

western area also improved 3E productivity during 2011–2013. This region is specific with

slower economic growth, yet the environmental pressures have been properly managed as

evidenced by the increase in 3E productivity.
The 3E-DEAmodels presented in this paper require the choice of the weights for input and

output variables. As it was mentioned before, we set equal weights to inputs and undesirable

outputs (i.e., 0.25). We further conduct the sensitivity analysis for Model (4). Specifically, we

define the low-, middle-, and high-importance weights for undesirable outputs and energy

inputs as 0.1, 0.25, and 0.4, respectively. If the weight for one of the variables is determined,

the remaining weights are allocated uniformly to add up to unity. Thus, the nine patterns of

weights are established. The results of the sensitivity analysis are presented in Figure 1.
The dotted line demonstrates the gaps between the highest and lowest ranks of the

regions due to changes in the weights. It is clear that the changes are quantitative ones

rather than qualitative ones. This indicates the 3E-DEA model is not sensitive to perturba-

tions in weights of the variables. The highly-ranked regions such as Beijing, Shandong, and

Hubei showed little variation in ranks. Note that most of these regions are located in the

east of China. The variation is also limited for the worst-performing regions (e.g., Ningxia).
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Figure 1. The differences in rankings of the regions due to changes in weights, 2013. Note: We use the first
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The highest spread is observed for regions with average or higher 3E performance. For

example, if CO2 is given a higher weight, Jilin ranks 15th among the 30 regions. If CO2 is

given a lower weight, Jilin ascends and ranks 11th among the 30 regions.

Conclusions

This paper proposed the 3E performance indicators and the associated productivity index.

These techniques allow assessing performance in regards to the goals of sustainability. The

key contribution of this paper lies in that the modified environmental technology has been

presented to impose the appropriate disposability assumptions on different undesirable

outputs. The aggregate 3E-DEA model and the equivalent linear programming problems

for computational convenience were presented. The aggregate model ignores the mix effects

and its discriminating power is not very high. Therefore, the Russell-type 3E-DEA model

was also presented. The non-radial Malmquist 3E productivity index was constructed to

model the changes in the 3E performance over time.
The Russell-type 3E-DEA model was employed to evaluate the 3E performance of 30

regions of China during 2011–2013. The results indicate that most of the regions did not

perform well in the sense of 3E goals. On average, the eastern area performed better than the

other two areas. However, certain cities constitute exceptions to this pattern. The

Malmquist show the trends and sources of changes in the 3E productivity over the time.

Almost all the regions showed improving 3E productivity for 2011–2013 as suggested by the

Malmquist index. Technological change appeared as the key factor driving the increase in

3E productivity. This indicates that shifts in industrial structure, gains in energy efficiency,

and abandoning of the backward capacity successfully pushed the production frontier away.
Sample and area averages indicated that efficiency change was negative in general. This

implies that most of the provinces did not manage to improve their productivity to the same

extent as the frontier provinces did. The lowest value of the latter variable was observed in

the eastern area and, particularly, in Hebei province. Analysis of the efficiency change terms

can provide a basis for allocating support for innovations which could ensure a more

intensive spillover of novel technologies in order to reduce the gaps in productivity.
The sensitivity analysis was also implemented to check whether perturbations in weight-

ing of the variables affect the ranking of the regions. The results indicate the Russell-type

3E-DEA model is not sensitive to changes in the weights.
The model can be applied to assess the development in the sense of the 3E objectives.

Suchlike analysis can be iterated in different countries in order to assess the effectiveness of

sustainable development policies there.
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