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ABSTRACT

Productivity analysis has been an important avenue for economic research. Therefore,
medleys of quantitative techniques have been proposed to operationalize productivity
analysis. In this article, an extended by-production model is discussed and applied to
ensure a link between the production and the pollution-generating subtechnologies. The
corresponding dual formulations are provided to interpret the economic role of pollution-
generating inputs in the subtechnologies. Finally, we integrate the proposed model with
the environmental Luenberger–Hicks–Moorsteen productivity indicator based upon in-
put and output directional distance functions. The proposed model is applied to measure
the green economic growth of agricultural sectors of the selected European countries.
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INTRODUCTION

Productivity analysis has been an important avenue for economic research as it
provides insights into the factors and magnitude of changes in transformation of
inputs (labor, capital, etc.) into outputs (value added, etc.). The emergence of the
big data and streaming data in agriculture has allowed for a deeper analysis of the
underlying agricultural processes (Kamilaris, Kartakoullis, & Prenafeta-Boldú,
2017; Coble, Mishra, Ferrell, & Griffin, 2018). Therefore, medleys of quantita-
tive techniques have been proposed to operationalize productivity analysis. In the
multiple-input and/or multiple-output context, the notion of the multiple factor
productivity or total factor productivity (TFP) is often used. Indeed, TFP mea-
sures the productivity by means of aggregate inputs and aggregate outputs. Due to
O’Donnell (2012), only certain indices and indicators satisfy the property of being
completely decomposable with regard to the two aforementioned aggregates and
thus can be termed as measures of TFP. Following Chambers (1988) and Machek
and Špička (2013), one can distinguish between the two groups of TFP measures:
the price-based measures and distance function-based ones. The price-based mea-
sures of TFP allow aggregating inputs and outputs by applying price data. Such
an approach has both merits and deficiencies. On the one hand, the price-based
aggregation allows just two observations to be compared and, thus, appears as
less data intensive. On the other hand, reliable price data are often unavailable
and, therefore, makes the analysis less certain. Examples of the price-based in-
dices include the Fisher and Tornqvist indices. The distance function-based indices
are based on the production frontiers and measures of the productive efficiency
(distance functions). These measures require no price information, yet more data
points are needed to approximate the production frontier and estimate the distance
functions than it is the case for the price-based measures. The estimation of the
production frontier can be carried out either parametrically (Cechura, Kroupova, &
Rudinskaya, 2015; 2017) or nonparametrically (Coelli & Rao, 2005; O’Donnell,
2012). Note that the parametric approach often relies on the Stochastic frontier
analysis. It allows for statistical inference, yet requires assumptions on the func-
tional forms of representations of the production technology. Furthermore, certain
desirable axioms might be violated if estimation is not restricted. As for nonpara-
metric analysis, it is widely applied as no assumptions regarding the functional
form of representations of the production technology are needed and such axioms
as convexity are satisfied. In this article, we focus on the nonparametric analysis
of TFP.

Among the distance function-based approaches, Malmquist, Luenberger,
Färe-Primont, and Hicks–Moorsteen indices or indicators are the key ones. Even
though the Malmquist productivity index proposed by Caves, Christensen, and
Diewert (1982) and the Luenberger productivity indicator proposed by Chambers
(2002) are the most widely applied measures, O’Donnell (2012) showed they
cannot be completely decomposed with respect to inputs and outputs. The Hicks–
Moorsteen productivity index was proposed by Bjurek (1996) and satisfies the
conditions defined by O’Donnell (2012). As the additive measures of productivity
allow for greater flexibility in the analysis, Briec and Kerstens (2004) offered the
Luenberger–Hicks–Moorsteen (LHM) TFP indicator. The LHM indicator allows
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for zero values in the data as it decomposes additively and can be regarded as a TFP
indicator as the decomposition can be carried out with respect to inputs and outputs.

The economic activities often induce undesirable externalities (e.g., pollu-
tion). The traditional economic growth theory did not account for this issue when
defining the measures of TFP. However, the concerns of the global warming and
climate change (Zhou & Wang, 2016; Liobikienė, Mandravickaitė, Krepštulienė,
Bernatonienė, & Savickas, 2017; Zhao et al., 2017; Yeboah-Assiamah, Muller, &
Domfeh, 2018) have altered the economic theory as the principles of ecological
economics have been addressed in models underpinning the research related to the
production economics. Distance functions and data envelopment analysis (DEA)
played a rather important role in nonparametric analysis of so-called green TFP. The
environmental directional distance function (DDF) proposed by Chung, Färe, and
Grosskopf (1997) has been applied in developing environmentally sensitive mea-
sures of efficiency and productivity (Azad & Ancev, 2014; Wang & Wei, 2016; Li &
Lin, 2017). Dakpo, Jeanneaux, and Latruffe (2016) and Tyteca (1996), Zhou, Poh,
and Ang (2016), Feng, Wang, Liu, and Huang (2017) presented surveys on applica-
tions of DEA for measurement of the environmental performance and green TFP.

The main contribution of this article is that we propose a refined reduced form
of modeling by-production technology in a nonparametric framework. We point
out some potential improvements for the initial by-production model introduced
by Murty, Russell, and Levkoff (2012) related to nonlinearity, weak connections
between subtechnologies, and unclear economic interpretation of the shape of
production possibility sets. The refined model can overcome the enumerated lim-
itations and thereby impose a single shadow price of pollution-generating inputs
for the two subfrontiers that describe the role of pollution-generating inputs in
producing desirable and undesirable outputs, respectively.

The LHM indicator has also been extended to tackle the measurement of
environmental performance via the green TFP. Abad (2015) used the generalized
environmental DDFs to construct the environmental LHM TFP indicator. In the
latter approach, inputs and undesirable outputs are treated in the same manner.
Further on, Seufert, Arjomandi, and Dakpo (2017) presented yet another instance
of the environmental LHM indicator relying on the by-production approach (Murty
et al., 2012; Ray, Mukherjee, & Venkatesh, 2018).i The indicator proposed by
Seufert et al. (2017), indeed, is output oriented (i.e., desirable and undesirable
outputs are optimized). In this article, we contribute to the discussion on the
environmental LHM TFP indicators by proposing a nonoriented measure, which
also considers inputs throughout the optimization.

Productivity gains are also important for agriculture (Dheera–Aumpon,
2018). We focus attention on energy use in agricultural sectors of different EU
countries. Many studies have compared the development of agricultural produc-
tivity and efficiency in the EU over the past few decades (e.g., Ball, Butault, San
Juan, & Mora, 2010; Vlontzos, Niavis, & Manos, 2014; Cechura et al., 2015; Kijek,
Nowak, & Domanska, 2016; Baráth & Fertő, 2017; Cechura, Grau, Hockmann,
Levkovych, & Kroupova, 2017; Dakpo, Jeanneaux, & Latruffe, 2017; Vlontzos,

i Weak disposability approach (Färe, Grosskopf, Lovell, & Pasurka, 1989; Kuosmanen, 2005) can be used
as an alternative for modeling the environmental production technology.
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Niavis, & Pardalos, 2017). However, most of the findings reported in these studies
do not deal with the environmental TFP at a macro level. Consequently, there is
a clear lack in the literature, except for Vlontzos et al. (2014, 2017), who dealt
with efficiency rather than TFP change. This article, therefore, attempts to analyze
the dynamics in the green TFP in the selected EU member states by applying a
new decomposition of the environmental LHM TFP indicator. The energy-related
GHG emission is included in the analysis as the undesirable output contributing
to the climate change. The research relies on country-level data from EUROSTAT
(European Commission, 2019) and FAOSTAT (FAO, 2019). The period covered is
years 1995–2016.

This article unfolds as follows. Section “Modeling undesirable outputs in
nonparametric approaches” briefly overviews the main literature on modeling the
environmental technologies in productivity and efficiency analysis. Further on,
section “Methodology” presents the methods used (by-production technology and
the associated measures of efficiency, environmental LHM indicator). Section
“Data and results” brings forward the results of empirical analysis focused on the
European agricultural sector. Finally, the section “Conclusions” concludes.

i MODELING UNDESIRABLE OUTPUTS IN NONPARAMETRIC
APPROACHES

The ecological considerations have appeared due to the threat of the global climate
change (Chen, Cheng, Nikic, & Song, 2018). Accordingly, there have been a
number of attempts to devise frameworks (Song, Fisher, & Kwoh, 2019) and
particular techniques (Song, Peng, Wang, & Dong, 2018; Song & Wang, 2018) for
measurement of the productive efficiency in the presence of undesirable outputs.
In this section, we briefly outline the major strands in this regard.

The seminal works of Koopmans (1951), Debreu (1951), Shephard (1953),
and Farrell (1957) have developed the basis of the Neo-Walrasian production
theory. The key concept within this theory is the production possibility set, which
is a representation of the feasible combinations of inputs and outputs. Initially,
research tended to emphasize desirable outputs (e.g., economic growth), while
negative externalities (e.g., pollution) remained ignored in the measurement of the
productive performance. To ensure economic interpretation, some assumptions are
usually imposed on the production possibility set, for instance, returns to scale and
disposability of outputs and inputs.

Pollution issues and global warming have drawn attention by economists
and policy makers to the green, or low-carbon, growth. Indeed, environmental
deterioration may have a negative effect on the economic performance in the long
run. Indeed, environmental deterioration is often caused by undesirable outputs
of the production process (or bad outputs or bad by-products). Incorporating un-
desirable factors into performance evaluation, therefore, has become a topical
issue in the literature. For modeling the bad outputs, there have been two main
approaches.

The first approach is to model bad outputs as (i) traditional inputs or (ii)
outputs with data transformation. In these instances, the classical assumption of
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free disposability is maintained. The bad outputs are treated as outputs by taking
reciprocals of the initial quantities (Lovell et al., 1995), or adding big enough
positive numbers to negated values of bad outputs (Seiford & Zhu, 2002; Wu
et al., 2013). However, considering bad outputs as inputs may not reflect the real
mechanism inside the production activity, and it is inconsistent with physical laws.
Therefore, such data transformation-based approaches cannot be interpreted in a
reasonable way (Färe, Grosskopf, Lovell, & Pasurka, 1989; Färe & Grosskopf,
2004; Dakpo et al., 2016; Ray et al., 2018).

The second approach seeks to introduce additional economic axioms on
production possibility sets, such as weak disposability and cost disposability as-
sumptions. Weak disposability is introduced by Shephard (1970) and Shephard
and Färe (1974). Another important condition is that of null-jointness, which links
desirable and undesirable outputs (Färe & Grosskopf, 2004). This approach allows
proportional decrease in both types of outputs and emphasizes the linkages among
good and bad outputs. Thus, pollution is impossible to be fully disposed of in the
production activity. Note that this approach is not applicable when emission is
easily controlled, as it is the case with SO2 emission, which can be soluble in water
totally. Chen, Wang, and Lai (2017) proposed the semidisposability approach to
handle the latter case.

The by-production technology proposed by Murty and Russell (2002) and
Murty et al. (2012) rests on costly disposability assumption. An advantage of
the by-production technology is the introduction of pollution-generating inputs.
This approach assumes two independent subtechnologies and allows for full
disposability in pollution. One subtechnology models production of the desirable
outputs, whereas another one models generation of the bad outputs. Yet, the
computational difficulty associated with nonlinear programs is an obvious pitfall
associated with the by-production model. Some empirical applications employ
DDFs to deal with nonlinearity (Cui & Li, 2017; Arjomandi, Dakpo, & Seufert,
2018; Murty & Russell, 2018; Shen, Baležentis, Chen, & Valdmanis, 2018; Dakpo
& Oude Lansink, 2019).

Cui and Li (2017) proposed a dynamic by-production model relying on
the carry-over factors (Tone & Tsutsui, 2010). Dakpo and Oude Lansink (2019)
presented the dynamic by-production model that links the subsequent time periods
by considering adjustment costs (Silva, Oude Lansink, & Stefanou, 2015). In
addition, Dakpo and Oude Lansink (2019) proposed some constraint links between
subtechnologies in order to assume equal amount inputs use to one another. Murty
and Russell (2018) discussed the linkages between axiomatic and by-production
approaches. Lozano (2015) pointed out that the by-production model follows the
network DEA models with parallel structure (Kao, 2017) and presented the slack-
based by-production model. Shen et al. (2018) presented the by-production model
for measurement of the aggregate efficiency.

We discuss the differences among variations of the by-production model in
detail in the next section. In the rest of this article, we follow the by-production
approach. We seek to overcome the limitations of the model by proposing its
linearized version. Furthermore, we integrate the by-production model into the
framework for measurement of the TFP change.
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METHODOLOGY

This section presents the outline of methods applied. First, we focus on the by-
production approach and present the corresponding programs for estimation of the
distance functions. Second, the LHM indicator is presented for measurement of
the TFP based on the by-production approach.

The By-Production Technology

Before proceeding with the refined by-production model, let us review the conven-
tional one. Assume that production possibilities for decision-making units (DMUs)
can be described by considering M + J outputs and N + P inputs. Among the
outputs, there areM desirable (good) outputs and J undesirable (bad) by-products.
Turning to inputs, there are N nonpolluting (clean) inputs, which only contribute
to generation of the desirable outputs and P pollution-generating (dirty) inputs,
which contribute to generation of the undesirable outputs. Ray et al. (2018) noted
that inputs and undesirable outputs are different in that the latter ones are not avail-
able prior to the production process, they are not transformed during the production
process, and their stocks increase after the production process completes.

Murty and Russell (2002) and Murty et al. (2012) argue that the weak dis-
posability assumption (WDA) may lead to unacceptable economic implications.
Compared to the WDA, where desirable and undesirable outputs are produced in
the same production technology, Murty et al. (2012) isolated pollution-generating
inputs and proposed a by-production model including two subtechnologies: one
subtechnology models the traditional production process where desirable out-
puts are produced by employing all the inputs (T1); another one focuses on a
pollution-generating process where undesirable outputs are generated by employ-
ing pollution-generating inputs (T2). Let xn,t ∈ RJ+ and xp,t ∈ Rp+ be the vectors
of nonpolluting and polluting inputs, respectively. Furthermore, let yt ∈ RM+ and
zt ∈ RJ+ be the vectors of desirable and undesirable vectors, respectively. The
by-production technology is then defined as:

TBP (t) = T1 (t) ∩ T2 (t)
= {

(xn,t , xp,t , yt , zt ) ∈ RN+P+M+J
+ : (xn,t , xp,t ) can produce yt ;

xp,t can generate zt
}

;
T1 (t) = {

(xn,t , xp,t , yt ) ∈ RN+P+M
+ |f (xn,t , xp,t , yt ) ≤ 0

}
;

T2 (t) = {
(xp,t , zt ) ∈ RP+J

+ |g(xp,t ) ≤ zt
}

;

(1)

where f(.) and g(.) are continuously differentiable functions. As the measures of
TFP involve mixed-period measures of efficiency, we introduce time index t. When
defining a technology, all the inputs and outputs belong to the same period and we
omit time notation when no mixed-period measures are discussed in the sequel.

The free disposability is imposed on T1 for all inputs and desirable outputs
(A1), while the costly disposability is assumed in T2 for pollution-generating inputs
and undesirable outputs (A2). This implies joint disposability of the pollution-
generating inputs and undesirable outputs (Ray et al., 2018). Formally, these axioms
are given by (note that time indexes are dropped for brevity):
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Figure 1: Graphical representation of the VRS by-production technology.

A1 : if (xn, xp, y, z) ∈ T1, then (x̃n, x̃p, ỹ, z̃) ∈ T1 for all (−x̃n,−x̃p, ỹ)

≤ (−xn,−xp, y).

A2 : if (xp, z) ∈ T2, then (x̃p, z̃) ∈ T2 for all (x̃p,− z̃) ≤ (xp, z). (2)

We also assume variable returns to scale (VRS). By denoting xt = (xn,t , xp,t ), one
can derive the output correspondence set as in Equation (3):

Pt (xt ) = {
(yt ,zt ) ∈ RM+J

+ : (xt , yt , zt ) ∈ TBP (t)
}
. (3)

A simple case with single input (X), single desirable output (Y), and single unde-
sirable output (Z) under a VRS technology can be shown in Figure 1.

Limitations Associated with the Conventional By-Production Technology

The by-production technology can then be used to estimate the environmentally
adjusted efficiency scores by an improved output-oriented Färe–Grosskopf–Lovell
indicator, which can be defined as:
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EFGL(xt ,yt ,zt ) = 1

2
min

{∑
δm

M
+
∑
θj

J
|(yt⊗−1δ, θ ⊗ zt ) ∈ Pt (x)

}
(4)

where yt⊗−1δ = (y1,t /δ1, . . . , yP,t /δP ) and γ ⊗ zt = (γ 1z1,t , . . . , γ J zJ,t ). Ther-
efore, Equation (4) maximizes the desirable outputs and minimizes the undesirable
ones by nonradial efficiency scores δg and γb, respectively. The reduced form of by-
production technology renders the following nonlinear program in the envelopment
form for observation (xk′, yk′, zk′), k’ = 1, 2, . . . , K, under a VRS technology:

min
δ,θ,λ,σ

1

2

⎛
⎝ M∑
m=1

δm/M +
J∑
j=1

θj/J

⎞
⎠

s.t.

K∑
k=1

λky
m,t
k ≥ym,tk′ /δ

m, ∀m = 1, . . . ,M,

K∑
k=1

λkx
n,t
k ≤ x

n,t
k′ , ∀n = 1, . . . , N,

K∑
k=1

λkx
p,t

k ≤ x
p,t

k′ , ∀p = 1, . . . , P ,

K∑
k=1

σkz
j

k ≤ θj z
j

k′, ∀j = 1, . . . , J,

K∑
k=1

σkx
p,t

k ≥ x
p,t

k′ , ∀p = 1, . . . , P ,

K∑
k=1

λk = 1,

K∑
k=1

σk = 1,

λk ≥ 0, ∀k = 1, . . . , K,

σk ≥ 0, ∀k = 1, . . . , K. (NLP1)

In Equation NLP1, dual weighting is used to account for the inner (dual)
structure of the by-production model. Specifically, intensity variables λk define
the frontier for T1, whereas σk define that for T2. Indeed, the first subtechnology,
T1, corresponds to a conventional production technology where all the inputs
are used to produce desirable outputs. The second subtechnology, T2, models
transformation of the pollution-generating inputs (e.g., fossil energy consumption)
into the undesirable outputs. Therefore, the desirable outputs are maximized for a
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given level of all the inputs in T1, whereas the quantity of undesirable outputs is
minimized for a given level of pollution-generating inputs in T2.

As per the setting in NLP1, certain difficulties arise in linking two subtech-
nologies in terms of benchmark selection. For instance, let us assume that two
countries are considered in the analysis (e.g., the United States and Iceland). Say
the United States shows a high level of GDP and is fully efficient in regard to the
frontier of T1 (i.e., it is fully efficient in turning the factor inputs into the GDP),
whereas Iceland shows low levels of pollutant emissions and is fully efficient in
regards to the frontier relative to T2 (i.e., it produces the lowest pollution for a
given level of pollution-generating inputs). At this point, a question may arise: are
the benchmark points the same across the two frontiers for a certain country and
can they be used as reasonable yardsticks? Indeed, the independent modeling of
the two subtechnologies may not allow it to represent the true production process.
Thus, an explicit link between the two technologies is essential.

Moreover, the production possibility sets, as defined in the conventional by-
production model, may not provide a clear economic interpretation under the VRS
technology. More specifically, point A in Figure 1––where frontier T2 originates
from––indicates that a certain amount of undesirable output can be generated by
input being held at the null level. Alternatively, assuming that there is point B at the
extremum of boundary-defining frontier T2, it is implied that a given (finite) level
of input can cause infinite pollution. This setting contradicts the material balance
condition.

Considering the properties of the by-production model offered by Murty
et al. (2012), we identify the following issues, which need to be tackled in order
to ensure consistency of the analysis:

Remark 1: The model offered by Murty et al. (2012) is a nonlinear one and might
be less operational than linear models due to the existence of local optima.

Remark 2: The two subtechnologies in the by-production model are not linked
explicitly and might render different benchmarks.

Remark 3: The production possibility sets applied in the conventional setting may
not provide a clear economic interpretation.

Accordingly, we first modify the model by Murty et al. (2012) and propose a
by-production model along with its dual formulation based on the output DDF in
section “Directional by-production model and its dual formulation.” The resulting
model is a linear one. We further explicitly link the two subtechnologies by in-
troducing an additional constraint in section “A refined model with single shadow
prices of pollution-generating inputs.”

Directional By-Production Model and Its Dual Formulation

Given observations outlined in section “Limitations associated with the conven-
tional by-production technology,” we first construct a by-production model based
on a directional output distance function. A generalized directional output distance
function defines a simultaneous increase in desirable outputs and a contraction in
undesirable outputs observed at period a ∈ {t, t + 1} given a technology defined in
terms of quantities in period b ∈ {t, t + 1}. Similarly, a directional input distance
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function defines contraction of inputs at a given level of outputs. The corresponding
directional functions are given as follows:

Db
(
xa, ya, za; 0, gay, gaz

) = Max
{
δ ∈ R+ :

(
xa, ya + δgay, za − δgaz

) ∈ TBP(b)
}
,

Db
(
xa, ya, za; gax, 0, 0

) = Max
{
δ ∈ R+ :

(
xa − δgax, ya, za

) ∈ TBP(b)
}
, (5)

where (gay , g
a
z ) ≥ 0 are directional vectors of desirable and undesirable outputs;

δ measures the maximum possible increase in desirable outputs and decrease
in undesirable outputs; and (a, b) ∈ {t, t + 1} × {t, t + 1} allows for the mixed-
period DDFs.

For an arbitrary observation (xtk′, ytk′, ztk′), k’ = 1, 2, . . . , K, the directional
by-production model under VRS takes the following form:

Db
(
xa, ya, za; 0, gay, gaz

) = max
δ,λk,σk

δ

s.t.

K∑
k=1

λky
m,b
k ≥ym,ak′ + δgm,ay , ∀m = 1, . . . ,M,

K∑
k=1

λkx
n,b
k ≤ x

n,a
k′ ∀n = 1, . . . , N,

K∑
k=1

λkx
p,b

k ≤ x
p,a

k′ , ∀p = 1, . . . , P ,

K∑
k=1

σkz
j,b

k ≤ z
j,a

k′ − δgj,az , ∀j = 1, . . . , J,

K∑
k=1

σkx
p,b

k ≥ x
p,a

k′ , ∀p = 1, . . . , P ,

K∑
k=1

λk = 1,

K∑
k=1

σk = 1,

λk ≥ 0, ∀k = 1, . . . , K,

σk ≥ 0, ∀k = 1, . . . , K, (LP1)

where (gay, gaz ) is the directional vector (in the current setting, we focus on simulta-
neous expansion of the desirable outputs and contraction of the undesirable ones).
The resulting model is a linear one.

Each linear program has the corresponding dual model. Therefore, we present
the dual model for Equation LP1 in order to gain insights into the underlying
economic logics. The dual model is formulated as follows:
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Db(xa, ya, za; 0, gay, gaz ) = min
πmy ,π

n
x ,π

p
x ,ω

p
x ,ω

j
z ,v1,v2

(
N∑
n=1

πnx x
n,a
k′ +

P∑
p=1

π
p
x x

p,a

k′

−
M∑
m=1

πmy y
m,a
k′ − v1

)
+
(

J∑
j=1

ω
j
z z
j,a

k′ −
P∑
p=1

ω
p
x x

p,a

k′ +v2

)

s.t.

M∑
m=1

πmy y
m,b
k −

N∑
n=1

πnx x
n,b
k −

P∑
p=1

πpx x
p,b

k + v1 ≤ 0, ∀k = 1, . . . , K,

P∑
p=1

ωpx x
p,b

k −
J∑
j=1

ωjz z
j,b

k − v2 ≤ 0, ∀k = 1, . . . , K,

M∑
m=1

πmy g
m,a
y +

J∑
j=1

ωjzg
j,a
z = 1,

πmy ≥ 0 ∀m = 1, . . . ,M,

πnx ≥ 0 ∀n = 1, . . . , N,

πpx ≥ 0 ∀p = 1, . . . , P ,

ωpx ≥ 0 ∀p = 1, . . . , P ,

ωjz ≥ 0 ∀j = 1, . . . , J,

v1 = 0 if T1 is under CRS, v2 = 0 if T2 is under CRS, (LP2)

where πmy , π
n
x , and πpx are the shadow values associated with the desirable out-

puts, nonpolluting inputs, and polluting inputs rendered by subtechnology T1, and
ω
p
x and ωjz are the shadow values associated with the polluting inputs and unde-

sirable outputs resulting in subtechnology T2, and v1, v2 allow for VRS. As one
can note, the two shadow values for the pollution-generating inputs vary across the
two subtechnologies (πpx and ωpx ). Indeed, this is due to the lack of link between
these subtechnologies. Therefore, the shadow prices of the pollution-generating
inputs differ depending on the shadow values used (shadow price equals the ra-
tio of shadow value of a pollution-generating input to that of a desirable output
multiplied by the market price of a desirable output). Although the directional
by-production model above can solve the limitation discussed in Remark 1, we
also detect an issue for this setting of the by-production approach:

Remark 4: These two sets of different shadow prices of pollution-generating
inputs across subtechnologies represent their dual role as inputs and outputs.

Moreover, the calculation of the input-oriented measures of efficiency is
complicated as the optimal values for pollution-generating inputs may be different
across the two subtechnologies. The fifth constraint of LP1 does not guarantee a
reduction of pollution-generating inputs as the benchmark input quantities can be
higher than the observed ones (this is implied by inequality sign “≥”). Thus, it
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may undermine the TFP calculation that considers both input- and output-oriented
measures.

To remedy this inconsistency, we further propose a refined directional by-
production model in the next subsection.

A Refined Model with Single Shadow Prices of Pollution-Generating
Inputs

As it was noted in section “Directional by-production model and its dual formu-
lation,” the two vectors of prices of pollution-generating inputs appear due to the
lack of the link between the two subtechnologies. Therefore, Lozano (2015) fol-
lowed the principles of the network DEA (Kao, 2017) and devised the free-link
network slack-based model. Here, we resort to the case of DDF and present the
envelopment form of the modified primal model, which clearly depicts the link
between the two subtechnologies:ii

Db
(
xa, ya, za; 0, gay, gaz

) = max
δ,θ,λ,σ

δ

s.t.
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λky
m,b
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K∑
k=1

λkx
n,b
k ≤ x
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k ≤ x
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k =
K∑
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λkx
p,b

k , ∀p = 1, . . . , P ,

K∑
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σkz
j,b

k ≤ z
j,a

k′ − δgj,az , ∀j = 1, . . . , J,

K∑
k=1

λk = 1,

K∑
k=1

σk = 1,

λk ≥ 0, ∀k = 1, . . . , K,

σk ≥ 0, ∀k = 1, . . . , K, (LP3)

where the fourth constraint ensures that the benchmarks (i.e., the resulting lin-
ear combinations rather than both sets of weights) for the two subtechnologies

ii Note that we omit constraint
∑K
k=1 σkx

p,b

k ≤ x
p,a

k′ , ∀p = 1, . . . , P , which is redundant due to the third
and fourth constraints in LP3.
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coincide. This new constraint requires that polluting inputs used in two subtech-
nologies are essentially equivalent. As the activity variables λ and σ allow for the
presence of two subtechnologies, the corresponding shadow prices of polluting in-
puts in the dual model then appear to be the same (hence “single” prices) across the
two frontiers. The shadow prices of polluting inputs implied by the third constraint
in LP3 are related to production of desirable outputs only. Conversely, the shadow
prices of pollution-generating inputs implied by the fourth constraint in LP3 play
a dual role in both subtechnologies and, thus, should be decomposed into two
parts for desirable and undesirable outputs, respectively (this issue will be further
discussed in LP4). In addition, subtechnology T2 assumes joint disposability of
pollution-generating inputs and undesirable outputs. We highlight the difference
between LP1 and LP3 in the rectangular-shaped area.

Indeed, there have been several attempts to establish a single benchmark for
the two subtechnologies. For instance, Dakpo et al. (2017) kept the constraints
presented in Equations NLP1 and LP1 and supplemented the model with equality
of the optimal values (linear combinations) of polluting inputs in the two sub-
technologies (cf. equation (1) in Dakpo et al., 2017). Ray et al. (2018) further set
the linear combination of polluting input in T2 equal to the observed quantity and
assumed that intensity variables would sum up to less than unity in T2 (cf. equation
(30) in Ray et al., 2018). Both of the latter two settings, indeed, imply that the
benchmarks for the pollution-generating inputs must equal the observed quantities
thereof. In this regard, the model given in LP3 allows for more flexibility as the
optimal quantity of the pollution-generating inputs is allowed to be equal to or
lower than the observed quantity. Furthermore, the fourth constraint in LP3 en-
sures that the potential productivity level is properly estimated when solving LP3.
Indeed, the distance to the frontier can be underestimated in case the optimal levels
of inputs do not correspond across the two subtechnologies. A simple example to
illustrate this issue is provided in online Annex A. As it was already told, Lozano
(2015) offered an exit for this shortcoming and proposed the more relaxed linkage
between the two subtechnologies.

The corresponding dual program of LP3 is presented in Equation LP4. We
modify the dual program given by EquationLP2 by augmenting the shadow value
of the pollution-generating inputs in T1 so that it would include the shadow value of
pollution-generating inputs resulting from subtechnology T2. Therefore, the virtual
profit of T1 is adjusted to account for the shadow price of pollution-generating in-
puts rendered by subtechnology T2. The modified linear program for by-production
model with single prices for pollution-generating inputs is given as follows:iii

Db(xa, ya, za; 0, gay, gaz ) = min
πy,πnx ,ψ

p
x ,ω

p
x ,ωz,v1,v2

[
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x x
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−
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ω
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z z
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]

iii Note that the objective function contains term
∑P
p=1 ω

p
x x

p,a

k twice (with plus and minus sign) after the
transformation. We omit this term from LP4 for the sake of brevity.
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s.t.
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πnx ≥ 0, ∀n = 1, . . . , N,
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x ≥ 0, ∀p = 1, . . . , P ,

ωjz ≥ 0, ∀j = 1, . . . , J,

v1 = 0 if T1 is under CRS, v2 = 0 if T2 is under CRS. (LP4)

Here, we also highlight the difference between LP2 and LP4 in rectangular-shaped
areas. The shadow prices of pollution-generating inputs (πpx ) are explicitly decom-
posed into two parts: one (ψp

x ) represents the role of producing desirable outputs;
another (ωpx ) is related to the generation of undesirable outputs. The latter variables
are the common factor that provides the link between the two subtechnologies.
Now, LP4 can provide a clear economic explanation of the underlying mathemat-
ical model: (i) the objective function is to maximize the operating shadow profit
(revenue less cost) based on T1 and T2; (ii) compared to LP2, the first and second
constraints in LP4 share a common factor

∑P
p=1 ω

p
x x

p,b

k with opposite signs that
implies an optimal cost of polluting inputs used to generate bad outputs. In LP2,
this element had not been explicitly separated from the cost of producing good
outputs, which might have caused ambiguous economic interpretation. Therefore,
the proposed model establishes the link between two subtechnologies with clear
economic interpretation.

Note that the modification of the shadow values and, consequently, virtual
profits in a subtechnology implies a change in the overall shadow profit. Specifi-
cally, the virtual profit for the whole production system is now based on a single
vector of prices of the pollution-generating inputs (as opposed to two vectors
in Equation LP2).

iii Measures of the TFP Change

The final stage we propose is to convert the efficiency problem in the productivity
problem. Briec and Kerstens (2004) proposed the LHM indicator, which is regarded
as a TFP measure. Compared to technological productivity indicators, the LHM
has some merits. As an additively complete TFP measure, it can be expressed in
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terms of changes in the aggregate input and output. The additive nature also allows
for zero values in inputs and outputs.

We follow Ang and Kerstens (2017) and Balezentis et al. (2017) to decom-
pose the change in the TFP by means of the LHM indicator. Distance functions
rendered by Equations LP3 or LP4 are employed for computation of the measures
of TFP change. Note that, in some cases, the inputs and outputs come from dif-
ferent periods—which allows measuring the gradient of the production frontier.
In the latter instances, the variables (input/output quantities and corresponding
directional vectors) are mixed on the right-hand side of Equations LP4, whereas
the changes in LP3 occur constraint-wise. In addition, input DDFs are involved
into the calculations.

The change in the TFP is calculated as follows:
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= 1
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(6)

where positive values indicate the gains in the TFP. Specifically, the TFP is mea-
sured in regard to changes in the input use, production of the desirable outputs,
and generation of the undesirable ones.

The TFP decomposes into the three terms with each of them representing the
effects of the technical efficiency change, technical change, and scale efficiency
change:

LHMt,t+1 = TECt,t+1 + TPt,t+1 + SECt,t+1. (7)

These terms can be calculated by employing DDFs. The values of the three
terms are interpreted in the same manner as it is the case for the LHM indicator.

The term of technical efficiency change captures the change in the TFP due
to gains or losses in technical efficiency of a particular DMU (country in our case).
In the case of technical efficiency change, the following calculation is applied:

TECt,t+1 = Dt
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)−Dt+1
(
xt+1
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)
. (8)

The gains in TFP due to the movement of the frontier are measured by
the technical change component. The technical change component is obtained by
considering distances to frontiers of the two consecutive time periods:
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Finally, the scale efficiency change component measures the change in the
TFP due to movement toward the most productive scale size. The latter component
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is obtained by measuring the changes in the gradient of the frontier in the region
delineated by the input-output vectors for the two subsequent time periods:
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(10)

DATA AND RESULTS

In this section, we apply the proposed measures for a sample of the European
countries. More specifically, we focus on the agricultural sector. As the proposed
approach needs to be tested in comparison with the conventional approach, this
section is divided into two parts. First, we present the results based on the modified
by-production approach. Second, we compare the modified by-production model
to the conventional one.

Data for European Agriculture

In this article, we seek to estimate the growth in TFP for agricultural sectors of a
sample of the European counties. Besides conventional production process, we also
focus on environmental pressures caused by energy-related emissions. Therefore,
the data from Eurostat (European Commission, 2019) and FAOSTAT (FAO, 2019)
databases are applied to describe the environmental technology involving both
agricultural production and environmental impacts. The technology includes one
desirable output (i.e., agricultural output), one undesirable output (energy-related
GHG emission), and four inputs (labor, energy, land, and capital consumption).

The data on agricultural output come from the economic accounts for agri-
culture provided by Eurostat. Agricultural output is measured in purchasing power
standards at the constant prices of 2010. The GHG emission in tones of CO2

equivalent is obtained from the Eurostat database. Energy-related GHG emission
from agriculture (excluding fisheries) is considered.

The data on final energy consumption (measured in tones of oil equivalent) in
agriculture and forestry come from the Eurostat energy statistics database. Capital
input can be measured by considering the capital stocks (which can be obtained
by employing the perpetual inventory method) or capital consumption. In our
article, we follow Baráth and Fertő (2017) and consider fixed capital consumption
from the economic accounts for agriculture (European Commission, 2019) as a
capital input. Fixed capital consumption is measured in terms of purchasing power
standards with constant prices of 2010. Data on agricultural land area come from
FAOSTAT. Labor input is measured in annual work units and the data are taken
from the agricultural labor input statistics database by Eurostat.

Due to data availability, we chose 17 European countries featuring rather
similar production structure. These countries are Austria, Belgium, Bulgaria, Czech
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Figure 2: Stochastic rates of growth in inputs and outputs for the whole sample,
1995–2016.

Republic, Denmark, Estonia, Finland, France, Hungary, Latvia, Lithuania, the
Netherlands, Poland, Romania, Slovakia, Slovenia, and Sweden. The data cover
years 1995–2016. The missing values have been extrapolated by using the most
recent data. Germany has been dropped from the analysis due to lack of the data.

Application of the Modified By-Production Model

The period of 1995–2016 marked an increasing output level and decrease in both
input use and undesirable output at the sample level. The dynamics in inputs and
outputs for the whole sample is given in Figure 2. The input use decreased by 0.62–
3.63% per annum on average with exception for capital consumption, which went
up by 0.41% per annum on average. These trends indicate the increasing capital
intensity, which is linked to mechanization and automatization of agriculture in
Europe (as well as in other parts of the world). However, the average annual growth
rate of the agricultural output was 0.69% for 1995–2016. Therefore, all the inputs
showed lower rates of growth if compared to agricultural output.

The aggregate energy-related GHG emission declined by some 1.09% per
annum on average. Again, this value is lower than the growth in the desirable
output. These findings imply that both conventional TFP based on the changes in
the (aggregate) input and desirable output and environmental TFP based on the
changes in the (aggregate) input and output increased at the sample level during
1995–2016. However, this finding does not preclude the presence of the opposite
trends in certain countries.

As it was shown in Equation (7), the change in TFP decomposes into the
three terms associated with different sources of productivity gains or losses. Fig-
ure 3 presents the cumulative results for 1995–2016. The environmental TFP went
up at an average annual rate of 1.73% during the period covered. The growth in
TFP was especially robust during the initial period of 1995–1998. The subsequent
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Figure 3: Decomposition of the LHM indicator based on the modified by-
production approach (average values for the sample), 1995–2016.

stagnation during 1998–2000 can be attributed to the Asian crisis and the resulting
turmoil in the European food and agricultural commodity markets. More specif-
ically, declining prices did not stimulate agricultural production and investments
into modern farming practices. However, the growth in the TFP continued during
the period of 2001–2008 with certain declines due to unfavorable climatic condi-
tions in most cases. The economic crisis of 2008 rendered subdued growth in the
agricultural TFP during 2008–2010 with a recovery afterward.

Component-wise, much of the growth in the environmental TFP can be
attributed to technical progress. This implies that the production frontier moved
outward with respect of the point of the origin for the countries surveyed during the
period of 1995–2016. The annual growth rate of technical progress was 1.2 p.p.
Technical efficiency change contributed to the average cumulative TFP change
by 12.4% during 1995–2016 with the average annual stochastic growth rate of
0.5 p.p. This indicates the magnitude of the gains in the TFP from country-specific
movement toward the production frontier due to country-specific technological in-
novations. The remaining component––scale efficiency change––had a negligible
effect on growth in the TFP. Specifically, the average cumulative effect of the scale
efficiency change was close to zero. This estimate indicates the gains in TFP due
to movement toward the most productive scale size. Of course, such movements
are rather limited in the case of certain agricultural inputs (e.g., labor and land).

We further seek to explore the differences among the countries surveyed in
terms of the annual TFP growth rate. Figure 4 presents the stochastic rates of growth
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Figure 4: Annual stochastic growth rates in TFP for selected countries, 1995–
2016.

of the environmental TFP based on the modified LHM indicator. The negative
growth rates were observed for two countries, namely Estonia and Bulgaria. As
regards Estonia, the country exhibited the steepest decrease in the TFP of 1.39%
per annum. The rate of growth for Bulgaria was –0.59% per annum. These results
are related to an increased carbon emission factor there.

France, Latvia, and Slovenia showed the average growth rates ranging in be-
tween 0.2% and 0.6%. These countries did not manage to decouple energy-related
GHG emission from economic growth in agriculture. For Czech Republic, Austria,
Lithuania, the Netherlands, and Finland, the growth rates of 1.1–2% were observed
during 1995–2016. The latter group of countries managed to improve their environ-
mental and economic performance, yet still remained below the average intensity
of resource use of environmental pressures. Lithuania, Denmark, Poland, Belgium,
Slovakia, and Sweden exhibited the rates of growth scattered around 3%. Finally,
Romania was attributed with the highest rate of growth of 4.2%. This country
managed to increase its agricultural output along with remarkable savings in input
use and energy-related GHG emission.

As it is shown by Equation (7), the LHM indicator decomposes into three
parts. Accordingly, Figure 5 presents the decomposition of the rates of growth
given in Figure 4. As it is suggested by decomposition of the sample average
(Figure 3), much of the change in the environmental TFP can be explained by
technical progress. However, certain countries showed divergence from the latter
pattern.
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Figure 5: Decomposition of the average growth rates of TFP for selected coun-
tries, 1995–2016.

Slovakia and Poland showed positive contributions of the technical efficiency
change component. This indicates the two countries reduced their inefficiencies and
moved closer to the production frontier. The contributions of the scale efficiency
change component appeared for more countries than it was the case with the
technical efficiency change component. However, the directions of this contribution
varied. For instance, Bulgaria, Finland, Lithuania, and Sweden all benefited from
gains in scale efficiency. On the contrary, Denmark, Belgium, and Slovakia saw
a decrease in their environmental TFP due to movement further from the point of
the most productive scale size. This indicates the need for improvements in factor
utilization in some countries.

The convergence among the European countries in terms of their levels of the
cumulative environmental TFP poses yet another important facet of the analysis.
To test the convergence, we fitted the linear regression where the coefficient of
variation (calculated for the cumulative TFP within a certain year) was conditioned
on the time index. The results are given in Figure 6.

As the trend line coefficient in Figure 6 suggests, there has been a general
tendency of decrease in the coefficient of variation over the time. Therefore, the
results imply that the countries covered in the study tended to converge in terms of
the environmental TFP. However, the empirical trend followed the S-shape, thus
implying cyclical behavior of the sample countries.

Comparison with the Conventional Model

For the sake of brevity, we refer to the modified approach presented in this article as
the “new” model, whereas the initial by-production model proposed by Murty et al.
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Figure 6: Dynamics in the coefficient of variation for the cumulative TFP, 1995–
2016.

Note: The period of 1995–1996 has been removed due to excessively high value of the coefficient of
variation.

(2012) is referred to as the conventional approach (Equations (1) and (2)). Note that
we use DDF in both cases. We begin the exposition by presenting the dynamics in
the average cumulative environmental TFP (Figure 7). The conclusions obtained
by applying the conventional model are virtually the same as those based on the
modified approach with some quantitative (rather than qualitative) differences.

The conventional approach identified the same shocks in the TFP change.
Decomposition of the overall TFP change yielded the same results as it was the
case in the new by-production model, namely the technical progress appeared as
the dominating factor of change in the TFP in both settings. The major difference
is that the new by-production model yielded higher estimates of the cumulative
TFP growth if opposed to the conventional one. Therefore, the restrictions on input
quantities imposed in the new model decreased the estimates of growth in the TFP.

As the LHM indicator satisfies the properties of the TFP indicators outlined
by O’Donnell (2012), one can decompose the LHM indicator into the input and
output change indicators (Ang & Kerstens, 2017). Thus, the conventional and new
by-production approach-based indicators can be compared in terms of contribu-
tions of the input and output indicators. Figure 8 presents the decomposition of
the LHM indicators in terms of input and output contributions. As one can note,
the differences mainly occurred on the input side. For Sweden, Slovakia, Poland,
the Netherlands, Hungary, France, Finland, and Bulgaria, the contribution to the
TFP growth by input indicator increased when switching to the new by-production
model. In the case of Hungary, France, and Finland, the direction of the contri-
bution was even reversed. For Romania, Lithuania, Estonia, Czech Republic, and
Austria, switching to the new by-production model rendered a decrease in the input
indicator.
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Figure 7: Decomposition of the LHM indicator based on the conventional by-
production approach (average values for the sample), 1995–2016.

Turning to the output side, Romania, Poland, Lithuania, Hungary, Finland,
Estonia, Czech Republic, Bulgaria, and Austria showed a decrease in the output
indicator due to switching to the new by-production model. However, the magni-
tude of such a change varied across the countries. Specifically, Romania, Poland,
Hungary, and Czech Republic experienced the steepest decreases. Sweden, Slove-
nia, the Netherlands, and Latvia saw an increase in the output indicators due to
switching to the new by-production model. For Slovakia, the value of the output
indicator also went up, yet remained negative.

In general, the input indicator showed more variability than the output indi-
cator across the two settings of the conventional and new by-production models.
Specifically, the coefficient of correlation between input (respectively, output) in-
dicators for the new and the conventional models was 0.72 (respectively, 0.91). As
it was expected, the restriction on the inputs in the new by-production model has
had a stronger effect on the input indicators if opposed to the output ones.

CONCLUSIONS

In this article, the by-production model ensuring the link between the two subtech-
nologies is compared to the conventional approach. More specifically, we show
the economic interpretation of the restriction on the quantities of the pollution-
generating inputs by presenting the dual model. Indeed, the extension of the
conventional by-production model ensures the presence of a single vector of the
shadow values of the pollution-generating inputs.
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Figure 8: Contributions of input and output indicators to the LHM indicator.

Notes: Cumulative values for 1995–2016 are presented. The input indicator has been negated in order to
depict its contribution to TFP.
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The modified by-production model utilizes the generalized DDF. Therefore,
the simultaneous expansion of desirable outputs and contraction of the undesirable
ones is facilitated when constructing the measures of the environmental TFP. The
LHM indicator was adapted for the modified by-production model and decomposed
into the components of technical efficiency change, scale efficiency change, and
technical progress.

The modified by-production approach was applied to measure the environ-
mental TFP change in agricultural sectors of the selected European countries. The
results indicated that a positive change in the environmental TFP was observed
during 1995–2016. The major driving force was technical progress. Also, the re-
sults suggested that there had been convergence among the countries analyzed
in terms of TFP change. Methodologically, we showed that the proposed by-
production model rendered lower estimates of TFP if opposed to the conventional
by-production model. Furthermore, the input indicator was affected to a higher
extent (if compared to the output indicator).

The modification of the by-production model can be applied either in a self-
standing manner (for measurement of efficiency and shadow prices) or integrated
into the measurement of the TFP. Indeed, other indices and indicators of the TFP
can be applied along with the proposed models.
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Färe, R., & Grosskopf, S. (2004). Modeling undesirable factors in efficiency evalu-
ation: Comment. European Journal of Operational Research, 157, 242–245.
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Machek, O., & Špička, J. (2013). Measuring performance growth of agricultural
sector: A total factor productivity approach. International Journal of Eco-
nomics and Statistics, 1(4), 200–208.

Murty, S., & Russell, R. R. (2002). On modeling pollution generating technologies.
Discussion papers series. Riverside: Department of Economics, University
of California, 1–18.

Murty, S., & Russell, R. R. (2018). Modeling emission-generating technologies:
Reconciliation of axiomatic and by-production approaches. Empirical Eco-
nomics, 54(1), 7–30.

Murty, S., Russell, R. R., & Levkoff, S. B. (2012). On modeling pollution-
generating technologies. Journal of Environmental Economics and Man-
agement, 64(1), 117–135.

O’Donnell, C. J. (2012). An aggregate quantity framework for measuring and
decomposing productivity change. Journal of Productivity Analysis, 38(3),
255–272.

Ray, S. C., Mukherjee, K., & Venkatesh, A. (2018). Nonparametric measures of
efficiency in the presence of undesirable outputs: A by-production approach.
Empirical Economics, 54(1), 31–65.

Seiford, L. M., & Zhu, J. (2002). Modelling undesirable outputs in efficiency
evaluation. European Journal of Operational Research, 142, 16–20.



510 Analysis of Environmental Total Factor Productivity Evolution

Seufert, J. H., Arjomandi, A., & Dakpo, K. H. (2017). Evaluating airline opera-
tional performance: A Luenberger–Hicks–Moorsteen productivity indicator.
Transportation Research Part E: Logistics and Transportation Review, 104,
52–68.
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