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a b s t r a c t 

This paper presents a four-component stochastic frontier model in which the frontier function is repre- 

sented by an unknown smooth input distance function, and inefficiency is decomposed into persistent 

and transient inefficiencies. Furthermore, the pre-truncation mean and variance of the transient inef- 

ficiency are functions of the environmental variables. By differentiating the four-component input dis- 

tance frontier with respect to the time trend, total factor productivity (TFP) growth is estimated under 

the semiparametric smooth coefficient framework, and is decomposed into six components, i.e., techni- 

cal change, scale component, allocative component, external component, efficiency change, and residual 

component. The empirical example focuses on the Lithuanian dairy sector with multiple outputs. Our re- 

sults show that there are some persistent and transient inefficiencies in Lithuanian dairy farms. However, 

these farms maintained TFP growth of 2% per annum on average during 2004–2016, and much of it is 

attributed to the technical change and scale components. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

i  

i

 

S  

w  

o  

K  

h  

f  

i  

o  

s  

(  

a  

l  

m  

s  

p  

t

1. Introduction 

Following the seminal work of Aigner and Lovell (1977) and

Meeusen and van Den Broeck (1977) , who first proposed the

stochastic production frontier framework using cross-sectional

data, the measurement of technical inefficiency has recently been

extended in two general directions. The first direction is to model

the technology frontier in more flexible manners. For example,

Fan, Li, and Weersink (1996) and Kumbhakar, Park, Simar, and

Tsionas (2007) relaxed the functional form assumption of the

production frontier function, and proposed the nonparametric

stochastic frontier (SF) analysis with inefficiency and noise terms.

Coelli and Perelman (1999) used linear programming, corrected

ordinary least squares (OLS), and data envelopment analysis (DEA)

to estimate distance functions. More recently, Sun and Kumbhakar

(2013) and Yao, Zhang, and Kumbhakar (2019) proposed the semi-

parametric smooth coefficient (SPSC) stochastic production frontier

model, in which the input elasticities (i.e., coefficients of logged

inputs) are unknown smooth functions of some non-traditional

inputs—they can be viewed as firm characteristics, policy variables,
∗ Corresponding author. 
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r any variables that describe the production environment, and

nefficiency is also modelled as a function of these non-traditional

nputs (i.e., environmental variables; hereafter, Z variables). 

The second direction is to model the error components of an

F model in different ways. Instead of estimating an SF model

ith two error terms, i.e., noise and inefficiency, with the help

f panel data, Colombi, Kumbhakar, Martini, and Vittadini (2014) ,

umbhakar, Lien, and Hardaker (2014) , and Tsionas and Kumb-

akar (2014) considered four-component stochastic production

rontier models, in which there are four error components,

.e., noise, random firm-effects, persistent (i.e., time-invariant,

r long-run) inefficiency, and transient (i.e., time-varying, or

hort-run) inefficiency. More recently, Badunenko and Kumbhakar

2017) proposed a four-component cost frontier model, and Lai

nd Kumbhakar (2018) suggested the use of maximum simu-

ated likelihood to estimate a four-component production frontier

odel. All of these four component models have fully parametric

pecifications of the frontier function, and therefore are subject to

ossible model misspecification, at least in the frontier part of the

echnology. 

To the best of our knowledge, this paper is the first to pro-

ose a four-component SF model in which the frontier function is

epresented by an unknown smooth input distance function (IDF)

hat is estimated nonparametrically. In other words, we relax the

https://doi.org/10.1016/j.ejor.2020.02.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.02.032&domain=pdf
mailto:ksun1@shu.edu.cn
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A  

1 Baležentis, Li, and Baležentis (2015) applied a semiparametric approach to 

analysing the patterns of technical efficiency of Lithuanian dairy farms. 
2 For an alternative derivation of the IDF, see Shephard (1953) , Shephard (1970) , 

and Kumbhakar and Lovell (20 0 0) , among others. 
3 In this paper, we focus on the input-oriented technical inefficiency, and there- 

fore the actual outputs equal the maximum feasible outputs. 
arametric functional form assumption of the IDF to be estimated.

urthermore, both the pre-truncation mean and variance of the

ransient inefficiency are functions of the Z variables, while only

he pre-truncation variance is a function of Z in Sun and Kumb-

akar (2013) and Lai and Kumbhakar (2018) ; that is, the Z variables

re the determinants of the transient inefficiency ( Kumbhakar &

un, 2013; Wang & Schmidt, 2002 ). While the inputs (outputs)

ould be argued as endogenous in a production (cost) function,

he IDF is free from these endogeneity problems so long as we

estrict the returns to scale (RTS) to be a constant; that is, firm-

nd time-invariant ( Kumbhakar, 2013 ). Sun, Kumbhakar, and Tvet-

rås (2015) proposed a cost frontier model in which inefficiency is

ecomposed into persistent and transient inefficiencies, and noise

s separated from firm effects. However, instead of estimating the

ost function nonparametrically, Sun et al. (2015) specified the out-

ut elasticity and input shares of the cost function as unknown

mooth functions of time trend only, while no determinant of the

ransient inefficiency (i.e., the inclusion of the Z variables) was al-

owed. 

In addition to proposing the novel four-component input dis-

ance frontier model with persistent and transient inefficiencies,

his paper seamlessly proceeds with estimating and decomposing

otal factor productivity (TFP) growth. Different approaches and

echniques have been available to measure TFP growth ( Chambers,

988; Coelli, Rao, and Battese, 1998; Diewert, 1981 , among others).

his paper follows the spirit of Kumbhakar and Sun (2012) and

ecomposes TFP growth by differentiating the four-component in-

ut distance frontier with respect to the time trend. Then, the

esulting growth formulation of the original input distance fron-

ier is used, along with the Divisia definition of TFP growth, to

ecompose TFP growth into the following six components: tech-

ical change (TC), scale component, allocative component, exter-

al component, efficiency change (EC), and residual component. In

ontrast, Kumbhakar and Sun (2012) decomposed TFP growth by

ssuming that all firms are fully technically efficient. The conse-

uence is that the EC cannot be obtained because it is equal to

ero by assumption, and the external component cannot be ob-

ained because no Z variable is introduced in their model. However,

ith the modelling of transient inefficiency and its determinants

i.e., the Z variables), this paper derives a finer decomposition of

FP growth with two more components than that in Kumbhakar

nd Sun (2012) , i.e., the EC and external component. Furthermore,

here is only one output in the application of Kumbhakar and Sun

2012) ; therefore, no output price data is needed to compute the

ctual revenue share, which is equal to unity in the single-output

ase. However, there are two outputs in the application of this pa-

er, and with input and output price data, we are able to compute

he actual revenue shares and actual cost shares. With this share

nformation, we can obtain non-zero scale and allocative compo-

ents, by allowing for possible market power and input misalloca-

ion, respectively. 

The empirical application focuses on farm-level analysis of

ithuanian dairy sector. Indeed, productivity of dairy sector in Eu-

ope and other regions has received much attention in the lit-

rature ( Ang & Oude Lansink, 2017; Cechura, Grau, Hockmann,

evkovych, & Kroupova, 2017; Kumbhakar & Heshmati, 1995; La-

ruffe, Ureta, Carpentier, Desjeux, & Moreira, 2017; Mennig & Sauer,

019; Sipiläinen, Kumbhakar, & Lien, 2013; Skevas, Emvalomatis, &

rümmer, 2017; 2018a; 2018b ) due to several reasons. First, dairy

ector, as well as the agricultural sector in general, falls under

he regulatory and support policies in most countries ( Kuipers,

alak-Rawlikowska, Stalgiene, & Klopcic, 2017; de Lauwere, Malak-

awlikowska, Stalgiene, Klopcic, & Kuipers, 2018 ). Second, the glob-

lised markets of dairy products imply transformations of the sup-

ly chains, including restructuring of farms. This issue is of par-

icular importance in the Central and Eastern European countries
here de-collectivisation took place in the early-1990s and created

n unsustainable farm structure. The case of Lithuania provides an

nteresting example of a dairy sector in transition ( Verhees, Malak-

awlikowska, Stalgiene, Kuipers, & Klop ̌ci ̌c, 2018 ) as the small

arms are phased out due to increasing competition and the re-

ulting structural shifts require further economic analysis. How-

ver, there has been no research on the analysis of TFP growth in

he Lithuanian dairy sector based on farm-level data and especially

sing the SPSC approach. 1 This approach is important in taking ac-

ount of differences in the marginal productivity of agricultural in-

uts resulting from non-optimal use of inputs. In the context of

conomic transformations, such situations may emerge due to in-

ut market distortions (e.g., Lithuania saw collectivisation and sub-

equent land reform). 

In this paper, we use the data from the Farm Accountancy Data

etwork (FADN) that covers the period of 2004–2016, and consider

oth specialised milk farms and mixed milk-cattle farms. First, the

echnical inefficiency and marginal effects of its determinants are

stimated via the nonparametric stochastic input distance frontier

unction. Second, the decomposition of TFP growth is carried out

o identify its sources in Lithuanian dairy farms by estimating an

PSC form of the frontier function. 

The rest of this paper is organized as follows. Section 2 de-

ives the IDF from the transformation function, and proposes a

our-component nonparametric input distance frontier model with

ersistent and transient inefficiencies. Section 3 derives the SPSC

rowth formulation of the input distance frontier model, and de-

omposes TFP growth using the growth formulation. The data that

e used are presented in Section 4 . The results are presented in

ection 5 . Finally, Section 6 concludes. 

. Estimation of an input distance frontier 

Following Kumbhakar (2013) , we derive the IDF as a represen-

ation of production technology from the transformation function: 2 

 · F (Y, X 

∗; Z, t, ω) = 1 , (1)

here A > 0 is the productivity parameter, and Y ∈ R 

Q 
+ is a vector

f the actual outputs. 3 X ∗ ∈ R 

K + is a vector of minimum feasible

nputs, and X ∗ = X/D, where X is a K -vector of actual inputs, and

 ≥ 1 is the scalar distance by which the input vector, X , can be de-

ated such that it reaches X 

∗. ln D ≥ 0 is interpreted as the input-

riented technical inefficiency, which may have two components,

.e., persistent and transient inefficiencies, with the help of panel

ata. We will return to this point later. Z ∈ R 

P is a vector of firm

haracteristics (e.g., firm age, size, etc.), t is the time trend, and

 denotes unobserved heterogeneity (e.g., individual effects). Z , t ,

nd ω are considered exogenous. The IDF is then obtained by im-

osing the restriction of homogeneity of degree one in X 

∗ on the

ransformation function (1) , using the first optimal input, X ∗
1 
, as

he numeraire: 

 · F (Y, ̃  X 

∗; Z, t, ω) = 1 /X 

∗
1 , (2)

here ˜ X ∗ is a vector of input ratios, with elements ˜ X ∗
k 

=
 

∗
k 
/X ∗

1 
, ∀ k = 2 , . . . , K. Using the fact that ˜ X ∗

k 
= ̃

 X k = X k /X 1 , ∀ k =
 , . . . , K, and X ∗1 = X 1 /D, the IDF (2) can be rewritten as 

 · F (Y, ̃  X ; Z, t, ω) = D/X 1 , (3)
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where ̃  X is a vector of input ratios, with elements ̃  X k , ∀ k = 2 , . . . , K.

The problem of this IDF is that some elements of Y and 

˜ X in

F ( · ) might be endogenous. To guarantee that all the variables in

F ( · ) are exogenous, 4 we follow Kumbhakar (2013) and further im-

pose the constant returns to scale (CRS) restriction—the RTS equals

one—on (3) ; that is, (3) is homogenous of degree minus one in

Y , using the first output, Y 1 , as the numeraire ( Coelli & Perelman,

1999 ), and we get 

A · F ( ̃  Y , ̃  X ; Z, t, ω) = (D/X 1 ) · Y 1 , (4)

where ˜ Y is a vector of output ratios, with elements ˜ Y q =
 q /Y 1 , ∀ q = 2 , . . . , Q . 

Taking the natural logarithm for both sides of (4) and imposing

an additive structure of individual effects, ω, gives 

ln Y 1 − ln X 1 = f ( ln ̃

 Y , ln ̃

 X ; Z, t) + ω + ln A − ln D, (5)

where ln F ( ̃  Y , ̃  X ; Z, t, ω) = f ( ln ̃

 Y , ln ̃

 X ; Z, t) + ω. 5 

To make (5) an estimable equation, and to estimate the input-

oriented technical inefficiency, we rewrite (5) by adding the sub-

scripts i and t as 

ln Y 1 it − ln X 1 it = f ( ln ̃

 Y it , ln ̃

 X it ; Z it , t) + ω i + v it − (u it + ηi ) , (6)

where i and t index firm and year, respectively, ln A it = v it is the

noise term, and ln D it = u it + ηi is the non-negative input-oriented

technical inefficiency, since ln D it ≥ 0. ln D it is decomposed into two

components, where u it ≥ 0 is the transient inefficiency that rep-

resents the inefficiency component that changes over time, and

ηi ≥ 0 is the persistent inefficiency that captures the inefficiency

component that is time-invariant. ω i are the firm effects. (6) ,

therefore, is a four-component SF model in which the four error

components are [ ω i + v it − (u it + ηi )] ; see Badunenko and Kumb-

hakar (2017) and Lai and Kumbhakar (2018) for fully parametric

four-component stochastic cost and production frontier models, re-

spectively. 

More specifically, Badunenko and Kumbhakar (2017) imposed

the translog functional form on the cost function, and Lai and

Kumbhakar (2018) imposed the Cobb-Douglas functional form on

the production function. However, in this paper, we relax the func-

tional form assumptions and estimate our four-component stochas-

tic input distance frontier when the functional form of f ( · ) is un-

known. That is, we choose to use the nonparametric approach to

estimating f ( · ) as an unknown smooth function. We propose a

four-step estimation procedure to estimate (6) , the four-component

stochastic input distance frontier, including the persistent and tran-

sient technical inefficiencies, as follows. 

Step 1: Rewrite (6) as 

ln Y 1 it − ln X 1 it = f ( ln ̃

 Y it , ln ̃

 X it ; Z it , t) − E(u it | Z it , t) − E(ηi ) + e it , 

(7)
4 Following Kumbhakar (2013) , the RTS is required to be a constant for all the in- 

put and output ratios to be exogenous. According to conventional wisdom, a natural 

choice of this constant is unity. 
5 If we rewrite (5) as 

ln D = ln X 1 − ln Y 1 + f ( ln ̃  Y , ln ̃  X ; Z, t) + ω + ln A, 

we can then get, under the IDF framework, the input elasticities as 

∂ ln D 

∂ ln X 1 
= 1 −

K ∑ 

k =2 

∂ f (·) 
∂ ln ̃  X k 

; ∂ ln D 

∂ ln X k 
= 

∂ f (·) 
∂ ln ̃  X k 

, ∀ k = 2 , . . . , K, 

and the output elasticities as 

∂ ln D 

∂ ln Y 1 
= −1 −

Q ∑ 

q =2 

∂ f (·) 
∂ ln ̃  Y q 

; ∂ ln D 

∂ ln Y q 
= 

∂ f (·) 
∂ ln ̃  Y q 

, ∀ q = 2 , . . . , Q, 

respectively. In other words, we can link the ln D with f (.). 
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here 

 it = v it − u it + ω i − ηi + E(u it | Z it , t) + E(ηi ) , (8)

nd E(e it | X it , Y it , Z it , t) = 0 given that: (1) E(v it | X it , Y it , Z it , t) =
(ω i | X it , Y it , Z it , t) = 0 , (2) E(u it | X it , Y it , Z it , t) = E(u it | Z it , t) ; that is,

 it is mean independent of X it and Y it , conditional on Z it and t , and

3) E(ηi | X it , Y it , Z it , t) = E(ηi ) , ∀ i and t . We can then view f ( · ) and

 ( u it | Z it , t ) as two unknown functions, and view E ( ηi ) as a constant,

nd estimate (7) via the series regression. 6 Obtain the residuals, ˆ e it .

Step 2: Rewrite (8) as 

 it = χ0 i + χit , (9)

here χ0 i = E(ηi ) + ω i − ηi , and χit = E(u it | Z it , t) + v it − u it . Then,

eplace e it in (9) with ˆ e it from Step 1, and estimate (9) as a fixed

ffects panel data model without any regressors, and obtain the

tted values of χ0 i , ˆ χ0 i , and the residuals, ˆ χit . 

Step 3: Use the relationship: 

0 i = E(ηi ) + ω i − ηi (10)

o estimate the persistent inefficiency, ηi ∼ iidN 

+ (0 , σ 2 
η ) . In prac-

ice, we replace χ0 i in (10) with ˆ χ0 i from Step 2. (10) can then

e viewed as a standard cross-sectional stochastic frontier model

ith a constant term (i.e., E ( ηi )) only, along with the noise term,

 i ∼ iidN(0 , σ 2 
ω ) . Since E(ηi ) = 

√ 

2 /π ση, we only need to estimate

he two parameters in (10) , i.e., σ 2 
η and σ 2 

ω , via the maximum like-

ihood estimation (MLE). The persistent inefficiency can then be es-

imated from 

(ηi | r 1 i ) = μ∗i + σ∗ · φ(μ∗i /σ∗) 
	(μ∗i /σ∗) 

, (11)

here r 1 i = ω i − ηi are the residuals in (10) , μ∗i = −r 1 i σ
2 
η /σ 2 ,

2 = σ 2 
η + σ 2 

ω , σ∗ = σησω /σ, and φ and 	 denote the standard

ormal density and distribution functions, respectively ( Jondrow,

ovell, Materov, & Schmidt, 1982 ), and the persistent TE score can

e computed from 

 E 0 i = E[ exp (−ηi ) | r 1 i ] = 

	(μ∗i /σ∗ − σ∗) 
	(μ∗i /σ∗) 

· exp 

(
−μ∗i + 

1 

2 

σ 2 
∗

)
(12)

 Battese & Coelli, 1988 ). 

Step 4: Use the relationship: 

it = E(u it | Z it , t) + v it − u it (13)

o estimate the transient inefficiency, u it ∼ iidN 

+ (μ(Z it , t) ,
2 
u (Z it , t)) , 

7 where μ(Z it , t) = c 0 + δ′ 
Z 
Z it + δt t and σu (Z it , t) =

xp (c 1 + ρ′ 
Z 
Z it + ρt t) . Hence, 

(u it | Z it , t) = 

μ(Z it , t) a (Z it , t) 

2 

+ 

σu (Z it , t) a (Z it , t) √ 

2 π

· exp 

(
−1 

2 

(
μ(Z it , t) 

σu (Z it , t) 

)
2 

)
, (14)

here a (Z it , t) = [	(μ(Z it , t) /σu (Z it , t))] −1 ( Kumbhakar and Lovell,

0 0 0 , Chapter 3). In practice, we replace χ it in (13) with ˆ χit from

tep 2. (13) can then be viewed as a non-linear panel SF model

ith a non-linear frontier function E ( u it | Z it , t ), along with the noise

erm, v it ∼ iidN(0 , σ 2 
v ) . 

8 We can then estimate all the parameters

n (13) —that is, c 0 , c 1 , δZ , ρZ , δt , ρt , and σ 2 —via the MLE. Let
v 

6 The gam function of the mgcv package in R comes in handy to do this. The 

odes are available from the authors upon request. 
7 Note that the truncated normal distribution nests some more parsimonious dis- 

ributions, such as the exponential distribution, as a special case ( Meesters, 2014 ). 
8 Sun et al. (2015) proposed a similar decomposition and estimation of the tran- 

ient inefficiency, without allowing the transient inefficiency to be determined by 

the external factors, Z it , and time trend. 
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10 Since Kumbhakar and Sun (2012) did not introduce inefficiency and Z variables 

in their model, they decomposed TFP growth into four components only, i.e., with- 

out the efficiency change and external component. See Feng and Serletis (2010) and 

Restrepo-Tobon, Kumbhakar, and Sun (2015) for alternative decompositions of TFP 

growth. 
11 This is because the scale component can be further decomposed as (1 −

RT S) 
∑ Q 

q =1 γq (·) ̇ Y q + 

∑ Q 
q =1 

(
R q − γq (·) ∑ Q 

q =1 γq (·) 

)
˙ Y q , where RT S = −1 / 

∑ Q 
q =1 γq (·) , R q is the 

actual revenue share, and 
γq (·) ∑ Q 

q =1 
γq (·) 

is the shadow revenue share. Perfect competi- 

tion implies that the actual revenue share equals the shadow revenue share. Fur- 

thermore, CRS implies that RT S = 1 , or equivalently, 
∑ Q 

q =1 γq (·) = −1 . Therefore, if 

perfect competition and CRS hold at the same time, R q = −γq (. ) , ∀ q = 1 , . . . , Q, and 

the scale component will then become zero. 
12 Following Kumbhakar and Sun (2012) , if the producers minimise their costs, 

W 

′ X , where W is the input price vector, subject to the IDF given in (5) , then we can 

get the first-order conditions: W 1 
W k 

= 

∂ D/∂ X 1 
∂ D/∂ X k 

= 

β1 (. ) /X 1 
βk (. ) /X k 

, ∀ k = 2 , . . . , K. It will then be 

straightforward to show that the cost share S k ≡ W k X k 
W 1 X 1 + ···+ W k X k = βk (. ) , ∀ k = 2 , . . . , K. 

Therefore, the allocative component is zero under cost minimisation. 
13 FADN is the European Union (EU)-wide system for collecting data on farm per- 

formance on an annual basis. The representative surveys are carried out within each 

country by applying random sampling to collect the farm-level data following uni- 

fied methodology. Thus, each observation represents a certain number of farms op- 

erating in a certain country ( Commission, 2019 ). 
it = μ(Z it , t) , and σ 2 
uit 

= σ 2 
u (Z it , t) , the transient inefficiency is es-

imated from 

(u it | r 2 it ) = ˜ μit + ˜ σ∗it ·
φ( ̃  μit / ̃  σ∗it ) 

	( ̃  μit / ̃  σ∗it ) 
, (15)

here r 2 it = v it − u it are the residuals in (13) , ˜ μit = (μit σ
2 
v −

 2 it σ
2 
uit 

) / ̃  σ 2 
it 
, ˜ σ 2 

it 
= σ 2 

v + σ 2 
uit 

, and ˜ σ∗it = σv σuit / ̃  σit ( Jondrow et al.,

982 ), and the transient TE score is computed from 

 E it = E[ exp (−u it ) | r 2 it ] = 

	( ̃  μit / ̃  σ∗it − ˜ σ∗it ) 

	( ̃  μit / ̃  σ∗it ) 
· exp 

(
− ˜ μit + 

1 

2 

˜ σ 2 
∗it 

)
(16) 

 Battese & Coelli, 1988 ). Finally, the inefficiency change, 

 u it /∂ t = ∂ E(u it | r 2 it ) /∂ t = δt 

[
σ 2 

v 
˜ σ 2 

it 

(1 − m it g it − g 2 it ) 

]
+ 

ρt 

˜ σ 2 
it 

{
σ 2 

v ˜ σ∗it 

[
g it (1 + m 

2 
it ) + m it g 

2 
it 

]
− 2 ̃  σ 2 

∗it (r 2 it + μit )(1 − g 2 it − m it g it ) 
}
, (17) 

here m it = ˜ μit / ̃  σ∗it and g it = φ(m it ) / 	(m it ) , is estimated using

he formula given in Kumbhakar and Sun (2013) . 

. A growth formulation and TFP growth 

Based on (6) , we can then proceed with estimating and decom-

osing TFP growth as follows. We first re write (6) as 

i + u it + ln Y 1 it − ln X 1 it = f ( ln ̃

 Y it , ln ̃

 X it ; Z it , t) + ω i + v it . (18)

hen follow Kumbhakar and Sun (2012) and take the time deriva-

ive of both sides of (18) , and we would have 

∂u it 

∂t 
+ 

˙ Y 1 it − ˙ X 1 it = β0 (·) + 

K ∑ 

k =2 

βk (·) ̇ ˜ X kit + 

Q ∑ 

q =2 

γq (·) ̇ ˜ Y qit 

+ 

P ∑ 

p=1 

ϕ p (·) ∇ t Z pit + νit , (19) 

here ˙ Y 1 it = ∂ ln Y 1 it /∂t, ˙ X 1 it = ∂ ln X 1 it /∂t, ˙ ˜ X kit = ∂ ln ̃

 X kit /∂t, ∀ k =
 , . . . , K, ˙ ˜ Y qit = ∂ ln ̃

 Y qit /∂t, ∀ q = 2 , . . . , Q, and ∇ t Z pit = ∂ Z pit /∂ t,
 p = 1 , . . . , P . In addition, we interpret the regression coefficients

s follows: 

0 (·) = 

∂ f (·) 
∂t 

; βk (·) = 

∂ f (·) 
∂ ln ̃

 X kit 

; γq (·) = 

∂ f (·) 
∂ ln ̃

 Y qit 

;

 p (·) = 

∂ f (·) 
∂Z pit 

. 

he properties of the IDF indicates that f ( · ) is non-decreasing in

n ̃

 X (i.e., βk ( · ) ≥ 0), and non-increasing in ln ̃

 Y (i.e., γ q ( · ) ≤ 0).

echnical progress means that f ( · ) is increasing in t . The lin-

ar homogeneity property of the IDF indicates that β1 (·) ≡ 1 −
 K 
k =2 βk (·) , and the CRS restriction indicates that γ1 (·) = −1 −
 Q 
q =2 

γq (·) . 9 These functional coefficients have clear economic

eanings. We can interpret β0 ( · ) as technical change (TC) because

t measures the shift of the input distance frontier over time, ce-

eris paribus . The rest are various elasticities, and νit = ∂ v it /∂ t is

he mean-zero random noise. In practice, we can replace the true

 u it / ∂ t in (19) with its estimated counterpart from (17) , and the

ther right-hand-side variables in (19) are essentially calculated

rowth rates via log differences from the data. 

The growth formulation allows us to decompose TFP growth

nto several components. To see this, we follow Kumbhakar and
9 In fact, γq (·) = ∂ ln D/∂ ln Y q , ∀ q = 1 , . . . , Q . 

i

d

un (2012) and start with the Divisia definition of TFP growth:
˙ 
 F P it ≡

∑ Q 
q =1 

R qit 
˙ Y qit −

∑ K 
k =1 S kit 

˙ X kit , where R qit denotes the rev-

nue share of each output ( q = 1 , . . . , Q), and S kit the cost share

f each input ( k = 1 , . . . , K), ∀ i and t . Add 

˙ T F P it to both sides of

19) and re arrange, and we can show that 

˙ 
 F P it = β0 (·) + 

Q ∑ 

q =2 

(R qit + γq (·)) ̇ ˜ Y qit + 

K ∑ 

k =2 

(βk (·) − S kit ) ̇
 ˜ X kit 

+ 

P ∑ 

p=1 

ϕ p (·) ∇ t Z pit −
∂u it 

∂t 
+ νit , (20) 

sing the fact that 
∑ Q 

q =1 
R qit = 1 , 

∑ K 
k =1 S kit = 1 , ˙ ˜ Y 1 it = 0 and 

˙ ˜ X 1 it =
 , ∀ i and t . Thus, TFP growth has six components. 10 The first com-

onent is TC captured by β0 ( · ). The second component is the

cale component: 
∑ Q 

q =2 
(R qit + γq (·)) ̇ ˜ Y qit = 

∑ Q 
q =1 

(R qit + γq (·)) ̇ Y qit . If

erfect competition and CRS hold at the same time, then the

cale component will be zero. 11 The third component usually

efers to the allocative component ( 
∑ K 

k =2 (βk (·) − S kit ) ̇
 ˜ X kit ) be-

ause it captures the effects of input misallocation (i.e., deviation

f input bundle from the optimal). If producers minimise their

osts and allocate their inputs optimally, this allocative compo-

ent will be zero. 12 The fourth component is the external compo-

ent ( 
∑ P 

p=1 ϕ p (·) ∇ t Z pit ) that captures the effect of external factors

uch as the scope of production, farm age and size, degree of com-

etition, and other variables that can affect production and can-

ot be classified as traditional inputs (e.g., capital and labour) and

utputs. The fifth component ( −∂ u it /∂ t) measures the efficiency

hange (EC). A positive value of it indicates inefficiency diminution

ver time, ceteris paribus . Finally, the last component is the resid-

al component that can be viewed as a productivity shock that is

ot explained by the model. 

. Data 

Our empirical research relies upon farm-level panel data from

he FADN 

13 describing the performance of Lithuanian family farms.

e look into the performance of these dairy farms and consider

he two types of farms: specialised dairy farms and mixed farms

roducing both milk and beef (farming types 45 and 47 as defined

y the European Commission Regulation 1242/2008). 14 The years
14 Both of these farm types are treated as specialist holdings (animal production) 

n the FADN. Farms are grouped into different farm types with respect to the stan- 

ard output (average value of the production based on five-year data). Annex I of 
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17 The dairy quota did not affect milk output in Lithuania. However, following its 

abolishment in 2015, milk markets saw increased volatility in milk prices, proba- 

bly because milk markets in Europe became more volatile. This also affected milk 

market in Lithuania. 
18 However, specialisation (proxied by the HHI) may affect productivity through 

different channels: it can impact the input use and production technology and en- 

sure higher productivity; but it can also increase vulnerability to shocks in the out- 

put markets and then decrease the input productivity due to underutilisation of in- 
2004–2016 are covered in the analysis. Because the FADN relies on

rotating sample, the resulting panel is unbalanced. After removing

the outliers, 15 the sample comprises a total of 3536 farm-year ob-

servations (i.e., 1163 farms appear in the panel). In particular, 3147

observations are available as the specialised milk farms, and the

other 389 observations are for mixed milk-cattle farms. The SPSC

model proposed in this paper works seamlessly with unbalanced

panel datasets, yet additional noise may be introduced into the

empirical analysis due to the changes in the farms surveyed during

the sample period. 

The production technology is modelled in terms of the five in-

put variables and two output variables, following, e.g., Cabrera, So-

lis, and Del Corral (2010) and Latruffe et al. (2017) . As we seek to

model and decompose TFP growth using (20) , the input and output

prices are also required. The inputs include: 

1. Labour ( X 1 ) measured in hours worked by both farmer’s

family members and hired labour force. The price of labour

( W 1 ) is assumed to be equal to the price of the hired labour

on a farm. In case the latter datum is missing, the annual

average is applied. Therefore, the price of labour is varying

across the farms in most cases; 

2. Herd size ( X 2 ) measured in livestock units (LSU). 16 The price

of maintaining a single LSU ( W 2 ) is assumed to be equal to

the ratio of livestock-specific expenses to the quantity of LSU

on a farm. In this setting, the price of a unit of the herd

varies across the farms due to differences in veterinary ex-

penses as well as other factors related to the differences in

farming practices; 

3. Intermediate consumption ( X 3 ) – the implicit quantity in-

dex that is obtained by applying price index ( W 3 ) provided

by Eurostat (goods and services currently consumed in agri-

culture, base year 2010) on the value of the intermedi-

ate consumption. Intermediate consumption represents spe-

cific costs (feedingstuffs, veterinary services, and livestock

insurance for livestock; and seeds, fertilizers, crop protec-

tion products, and crop insurance for crops) and overheads.

In this instance, the prices are year-specific but not farm-

specific; 

4. Capital assets ( X 4 ) – the implicit quantity index that is ob-

tained by deflating the value of machinery and buildings at

the beginning of the year by the price index provided by

Eurostat (goods and services contributing to agricultural in-

vestment, base year 2010). Note that capital assets do not

include the value of livestock to avoid double counting. The

price of the capital asset ( W 4 ) is obtained as the ratio of

the interests paid and depreciation to the implicit quantity

of the capital assets. Therefore, the prices of the capital as-

sets are observation-specific; and 

5. Utilised agricultural area (UAA, X 5 ) comprises both own and

rented area measured in hectares. Land price ( W 5 ) is ob-

tained as the rent price for each farm. In case these data

are not available, the annual average value is used instead. 

The farm-specific prices are derived from the FADN sample. The

use of farm-specific prices can be justified in the sense that milk
Regulation 1242/2008 provides detailed requirements of the standard output struc- 

ture for each farming type. The basic requirement is that livestock standard output 

comprises at least 2/3 of the total standard output (with further requirements on 

the structure of a herd). See Commission (2019) for further details. 
15 Those observations that lie below Q1 − 1 . 5 · IQR and above Q3 + 1 . 5 · IQR are 

considered to be outliers and thus dropped from the sample, where Q 1 and Q 3 

are the first and third quartiles, respectively, and IQR is the inter-quartile range of 

a sample. As a result, about 7.7% of the observations in the original sample were 

dropped. 
16 LSU is a common unit for different species and classes of livestock. For instance, 

one dairy cow equals 1 LSU ( Commission, 2019 ). 

p

b

i

o

t

l

(

(

rice depends on the farming practices, which are related to milk

uality. As regards the factor inputs, their prices might be affected

y the contracts among farmers and owners/sellers of the inputs.

ubject to data availability, we also use country-level input price

ndices for Lithuania as proxies of input prices. This setting may

mpact the allocative component of TFP growth. 

The outputs include: 

1. Milk ( Y 1 ) measured in tons. The observation-specific prices

of milk ( P 1 ) are taken from the FADN database 17 ; and 

2. Other outputs ( Y 2 ) measured as an implicit quantity index.

The index is constructed by considering the other livestock

output (i.e., other than milk), crop output and other out-

put. The Tornqvist price index ( P 2 ) is calculated by using the

agricultural output price indices provided by Eurostat (base

year 2010). This results in observation-specific prices. 

The following three contextual variables are included in the

mooth coefficients as well as the inefficiency distribution. 

1. Herfindahl Hirschman Index (HHI), Z 1 , measures the scope of

the production (traditionally, it is used to measure the size

of firms in relation to industry). In our case, HHI measures

the concentration of the output-mix (or degree of farm’s

specialisation), instead of the market-wide measure used in

the literature. HHI increases with increasing specialisation.

In general, productivity is likely to increase with specialisa-

tion. 18 We obtain the HHI as the sum of squared revenue

from different products produced on a certain farm. 

2. The logged 

19 support payments, Z 2 , include both subsidies

related to production activities and investments. 20 It is gen-

erally agreed that production and investment subsidies may

contribute to acquisition of inputs ( Minviel & De Witte,

2017 ). In practice, the use of the investment subsidies is

more constrained than that of the production subsidies. In-

creasing input intensity should lead to higher productivity

and efficiency. However, the efficiency of production (follow-

ing investments and input use) may be dampened due to in-

put market imperfection (increased profit margins for capital

goods subject to support investments) and farmer’s inabil-

ity to take proper decisions on the input- and output-mix in

the light of the increasing input use, as well as decreased

incentives for productivity improvements. See Minviel and

Latruffe (2017) and Latruffe et al. (2017) for discussion on

support payments as a determinant of efficiency. 

3. Farmer’s age, Z 3 , is included as older farmers are expected

to possess higher managerial capabilities. For instance, the

variable has been used as a proxy for experience in farming

by Latruffe, Balcombe, Davidova, and Zawalinska (2004) . 
uts. See, e.g., de Roest, Ferrari, and Knickel (2018) for a discussion on the linkages 

etween farm performance and specialisation. 
19 The effects of the support payments can be taken into account by introduc- 

ing different variables into the econometric models. For instance, Mary (2013) used 

support payments in levels when analysing their impacts on TFP growth. We use 

the logged form for several reasons. First, this allows interpreting the results easier, 

.e., the effect of growth in the support payments by 1% is obtained. Second, the use 

f the logged form decreases the likelihood of the occurrence of outlying observa- 

ions. Third, the sign of the coefficient is interpreted in the same manner for either 

evel or logged variable, as the support payments data are non-negative. 
20 Subsidies related to production correspond to indicator SE605 in Commission 

2019) . Subsidies on investments correspond to indicator SE406 in Commission 

2019) . 



T. Baležentis and K. Sun / European Journal of Operational Research 285 (2020) 1174–1188 1179 

Fig. 1. TE scores. 
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Table 1 

Descriptive statistics of the variables used. 

Full sample Type = Milk Type = Milk Cattle 

Labour ( X 1 ), hours 

Mean 5807.98 5939.05 4747.60 

SD 4960.13 5177.20 2357.41 

Min 1095.00 1095.00 2030.00 

Max 93544.00 93544.00 14704.00 

Herd size ( X 2 ), LSU 

Mean 57.87 59.04 48.39 

SD 69.33 71.24 50.45 

Min 1.84 1.84 4.62 

Max 800.77 800.77 269.46 

Intermediate consumption ( X 3 ), index 

Mean 49673.68 51678.57 33454.23 

SD 79859.02 83257.83 40028.87 

Min 1752.82 1752.82 3977.43 

Max 1684415.29 1684415.29 242979.70 

Assets ( X 4 ), index 

Mean 76075.49 79606.91 47506.38 

SD 121760.74 126626.43 64381.80 

Min 480.35 480.35 630.63 

Max 1494335.84 1494335.84 510487.32 

Utilised agricultural area ( X 5 ), hectare 

Mean 90.39 91.65 80.14 

SD 94.60 96.71 74.67 

Min 2.17 2.17 4.40 

Max 956.77 956.77 386.95 

Milk output ( Y 1 ), ton 

Mean 197.64 212.28 79.16 

SD 292.65 304.21 118.67 

Min 1.50 3.04 1.50 

Max 4867.88 4867.88 704.50 

Other outputs ( Y 2 ), index 

Mean 37552.87 38011.36 33843.74 

SD 59669.98 61651.62 40060.33 

Min 98.19 98.19 3423.66 

Max 1004395.41 1004395.41 262848.28 

Labour price ( W 1 ), EUR/hour 

Mean 2.02 2.04 1.92 

SD 0.66 0.67 0.58 

Min 0.77 0.77 0.85 

Max 6.90 6.90 5.80 

Herd price ( W 2 ), EUR/LSU 

Mean 488.47 499.89 396.13 

SD 262.93 273.45 118.13 

Min 121.37 121.37 129.96 

Max 11875.88 11875.88 949.98 

Intermediate consumption price ( W 3 ), index 

Mean 1.05 1.05 1.02 

SD 0.16 0.16 0.16 

Min 0.77 0.77 0.77 

Max 1.26 1.26 1.26 

Assets price ( W 4 ), EUR 

Mean 0.25 0.25 0.26 
4. Time trend t is also included to account for temporal varia-

tions in efficiency due to sector-wide shocks. 

Table 1 presents the descriptive statistics, whereas Table 2 sum-

arises the stochastic rates of growth for the input and output

ariables. The figures provided in Table 1 suggest that milk farms,

n average, are larger than the milk-cattle farms in terms of labour

nput (5.9 thousand hours and 4.7 thousand hours on average, re-

pectively). Herd size is also larger, on average, for milk farms than

or milk-cattle farms (59 LSU and 48 LSU, respectively). Intermedi-

te consumption and assets are much higher for the milk farms

han for the milk-cattle farms on average. The same pattern is ob-

ained by considering the ratios of intermediate consumption or

ssets to the other inputs (labour, land, or herd size). This sug-

ests that milk farms are more likely to embark on more intensive

arming practices than the milk-cattle farms. UAA is rather similar

cross the two farming types. Whereas the average milk output is

igher for milk farms (212 tons) than for the milk-cattle farms (79

ons), there is no such difference in terms of the other outputs. Ob-

iously, milk farms are more specialised and show higher average

HI (0.69) than the milk-cattle farms (0.51). 

As suggested by Table 1 , labour input shows the lowest rate of

rowth among all the inputs for the whole sample (1.3% per an-

um). The highest increase is observed for assets (8.9% per an-

um), which indicates that serious modernisation has been tak-

ng place in Lithuanian dairy farms. Intermediate consumption also

hows rates of growth exceeding 5% per annum for both farm-

ng types. Increasing intermediate consumption may improve both

uality and quantity of the outputs. As regards the quantity of out-

uts, both farming types show increasing production of the other

utputs (e.g., meat), whereas an increase in milk production is only

bserved for specialised milk farms. 

. Estimation results 

The application of the IDF allows us to analyse the two inter-

wisted issues, namely technical efficiency (TE) and TFP growth.

herefore, this section proceeds by discussing dynamics in TE and

FP of Lithuanian dairy farms. In this paper, we consider the two

arming types, viz., specialised milk farms and mixed milk-cattle

arms. 

.1. Technical efficiency 

First, we estimate the persistent and transient TE scores as pre-

ented in (6) . The mean persistent TE (PTE) score for the whole

ample is 0.97 with a standard deviation of 0.01. The mean tran-

ient TE (TTE) score for the whole sample is 0.95 with a standard

eviation of 0.02. 21 Fig. 1 plots the histograms of PTE and TTE,
21 These results are quite comparable to those reported in Kumbhakar (2013) , who 

tudied the Norwegian dairy farms during 1992–2006 using the translog output dis- 

SD 0.12 0.12 0.12 

Min 0.01 0.01 0.06 

( continued on next page ) 
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Table 1 ( continued ) 

Full sample Type = Milk Type = Milk Cattle 

Max 0.63 0.63 0.63 

Land price ( W 5 ), EUR/hectare 

Mean 13.90 14.14 12.00 

SD 12.58 12.71 11.30 

Min 0.03 0.03 0.15 

Max 126.41 126.41 62.52 

Milk price ( P 1 ), EUR/ton 

Mean 230.46 233.62 204.89 

SD 57.03 56.66 53.51 

Min 86.89 86.89 109.73 

Max 520.00 520.00 367.82 

Other outputs’ price ( P 2 ), index 

Mean 1.00 1.00 0.99 

SD 0.03 0.03 0.02 

Min 0.93 0.93 0.95 

Max 2.41 2.41 1.06 

HHI ( Z 1 ) 

Mean 0.67 0.69 0.51 

SD 0.20 0.19 0.18 

Min 0.17 0.19 0.17 

Max 1.00 1.00 1.00 

Support payments in log ( Z 2 ) 

Mean 9.35 9.34 9.37 

SD 1.03 1.04 0.97 

Min 6.34 6.34 7.26 

Max 12.59 12.59 11.63 

Farmer’s age ( Z 3 ), years 

Mean 47.07 47.28 45.42 

SD 10.46 10.32 11.37 

Min 19.00 19.00 20.00 

Max 75.00 75.00 75.00 

Time trend ( t ) 

Mean 7.54 7.63 6.85 

SD 3.61 3.63 3.38 

Min 1.00 1.00 1.00 

Max 13.00 13.00 13.00 

1. Total number of observations = 3536. 2. t is defined as year- 

2003, where year varies from 2004 to 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Determinants of the transient inefficiency. 

Intercept Z 1 Z 2 Z 3 t 

HHI Support payments Farmer’s age Time trend 

μ( Z , t ) 

−0.0744 −0.0105 0.0055 0.0005 ∗ 0.0004 

(0.0518) (0.0206) (0.0064) (0.0003) (0.0015) 

σ u ( Z , t ) 

−3.6166 ∗∗∗ −0.1464 0.1232 ∗∗∗ −0.0074 ∗ 0.0258 ∗

(0.4557) (0.2282) (0.0471) (0.0038) (0.0141) 

1. Z variables are described in Section 4 . 2. Standard errors are in the parentheses. 

3. ∗ , ∗∗ and ∗∗∗ indicate significance at the level of 10%, 5% and 1%, respectively. 
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22 The model involving both farming type and regional dummies rendered signifi- 

cant coefficient of support payments at the 10% level in μ( Z , t ) in Appendix A , and 

this provides further evidence that support payments increase inefficiency. In ad- 

dition, Appendix B provides estimation results using two alternative measures of 

subsidies, i.e., support payments in level, and support payments per hectare. We do 

not use subsidies per LSU as a proxy for support intensity as much of the support 

received by Lithuanian dairy farms is related to crop production. For instance, only 
respectively. There is a left-tail of the histogram of transient in-

efficiency, and about 14% of the observations have TTE scores of

less than 0.93. This suggests that there is room for improvement

in these observations. The overall TE (OTE) score is computed as

PTE × TTE, and its histogram is reported in Fig. 1 . The mean OTE

is 0.92 with a standard deviation of 0.02. It seems that technical

inefficiency associated with time-varying effects comprises a sim-

ilar share of the overall technical inefficiency of Lithuanian dairy

farms, compared with the persistent inefficiency that is associated

with managerial practices and other stable conditions. 

As suggested by (13) , pre-truncation mean and variance, and

also the standard deviation of the underlying truncated normal dis-

tributions of transient inefficiency are modelled with respect to ex-

planatory variables, Z . Table 3 presents the estimates of parameters

governing μ( Z , t ) and σ u ( Z , t ). Out of the four variables, support

payments appear to be significant at the 1% level, and farmer’s age

and time trend appear to be significant at the 10% level, in σ u ( Z ,
tance function (ODF), IDF, and system models, and found that the mean TE scores 

of all these three cases are around 0.9. 

a

m

g

c

Table 2 

Stochastic annual growth rates for inputs and outputs

Farm Types Labour Herd Size Interme

consum

Milk 1.2 3.0 5.2 

Milk and Cattle 1.6 7.4 6.6 

Whole Sample 1.3 3.5 5.4 
 ). In all instances, these variables significantly impact the standard

eviation of the transient inefficiency; therefore, there is strong ev-

dence that a change in one of these variables would change ineffi-

iency, ceteris paribus . More specifically, the coefficients of support

ayments and time trend in σ u ( Z , t ) are significantly positive. This

eans that an increase in support payments or time trend would

ncrease the pre-truncation variance of transient inefficiency, and

his would also increase the post-truncation mean of inefficiency,

nd thus increase inefficiency itself, holding all the other deter-

inants and the pre-truncation mean constant . The coefficient of

armer’s age in σ u ( Z , t ) is significantly negative. This means that

n increase in farmer’s age would decrease the pre-truncation vari-

nce, and this would also decrease the post-truncation mean of in-

fficiency, and thus decrease inefficiency, holding all the other deter-

inants and the pre-truncation mean constant . 

Given that the expected efficiency level depends on both mean

nd standard deviation, Kumbhakar and Sun (2013) proposed es-

imating the marginal effects of Z (i.e., determinants of ineffi-

iency) to quantify the effects of Z on the expected inefficiency.

ig. 2 shows the resulting kernel densities of these marginal ef-

ects for Lithuanian family farms. The marginal coefficients ob-

ained confirm the increasing specialisation (HHI) decreases the

nefficiency as much of the probability mass falls below the zero

ffect. This finding suggests that specialisation of farming is bene-

cial for Lithuanian dairy farms. The increasing support payments

ontribute to increasing inefficiency. Note that this is a result of

nteraction between the pre-truncation mean ( μ( Z , t )) and pre-

runcation standard deviation ( σ u ( Z , t )) of the underlying ineffi-

iency distribution. An increase in either μ( Z , t ) or σ u ( Z , t ), ceteris

aribus , would increase the post-truncation mean of inefficiency,

nd thus increase inefficiency itself. 22 This indicates the need for

mprovement in the effectiveness of the support measures under
round 35 percent of the support payments related to production for dairy farms 

was related to animals in 2016 (see Table 27 on page 77 in Economics, 2017 ). The 

easure of subsidies relative to the output is not appropriate as it induces endo- 

eneity (less efficient farms produce less output and the subsidy-to-output ratio in- 

reases). Further analysis of support-efficiency link is required by representing the 

 (%), 2004–2016. 

diate Assets UAA Milk Other 

ption output outputs 

8.5 2.7 3.8 8.1 

10.2 5.2 0.0 10.7 

8.9 2.9 4.0 8.4 
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Fig. 2. Marginal effects of the determinants of transient inefficiency. 
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23 To put it another way, a randomly selected milk farm type has a lower level 

of technical progress than a randomly selected milk-cattle farm type. However, no 

stochastic dominance between the two farming types is found in terms of persis- 

tent, transient, and overall TE scores, as well as marginal effects of the determinants 

of the transient inefficiency. The average TE scores and marginal effects of the de- 

terminants of the transient inefficiency of the two farming types are qualitatively 

similar. 
24 Because the smooth coefficients and TFP growth components are unknown non- 
he Common Agricultural Policy (CAP). Increasing farmer’s age de-

reases inefficiency. In the case of Lithuanian dairy farms, older

armers seem to be more experienced and applying more efficient

arming practices. Finally, the inefficiency is likely to increase with

ime for most farms. 

.2. TFP growth 

This section presents the results of estimation of (19) . This al-

ows us to look into the properties of the underlying technology

y considering the regression coefficients. In addition, TFP growth

an be calculated and decomposed into several components such

s technical change (TC), scale, and allocative components, etc. The

ADN relies on the rotating sample as some farms do not enter the

urvey in the next time period. Therefore, we construct the data

et that only comprises observations for two consecutive time pe-

iods for each farm for estimation of TFP growth. The details re-

orted in Section 4 imply that each farm stays in the sample for

536/1163 = 3.04 years on average. Table C.1 in Appendix C presents

he descriptive statistics of the variables used to estimate (19). 

.2.1. Smooth coefficients 

The smooth coefficient model in (19) is estimated to proceed

ith the analysis of TFP growth. The regression coefficients are

unctions of inputs, outputs, time trend and the three contextual

ariables (i.e., HHI for output structure, logged support payments,

nd farmer’s age). For ease of comparison, Fig. 3 plots the empirical

umulative distribution functions (ECDF) of the estimated smooth

oefficients of milk farm type versus milk-cattle farm type. To un-

erstand these plots, we can see, for example, that the ECDF of

0 of milk farm type lies above that of milk-cattle farm type over

ost of the domain. This indicates that the histogram of β0 esti-

ates of milk farm type is to the left of that of milk-cattle farm
evels and intensity of support in different ways in order to draw robust conclusions 

n the issue. This can be saved as future work. 

l

n

c

b

ype, and that the β0 (i.e., TC) estimates of milk farm type are

tochastically smaller than (i.e., first-order stochastically dominated

y) that of milk-cattle farm type. 23 This suggests that mixed farms

njoy higher rates of technical progress. Looking at the output

tructure, these changes in distributions of the TC coincides with

he increasing diversification of farms ( Table 2 ). More specifically,

ilk farms show a decrease in specialisation as the growth rates in

he other outputs exceed those for the milk output, yet milk-cattle

arms show even higher discrepancy of growth rates in the two

utputs. This indirectly implies that increasing the scope of pro-

uction is associated with an outward frontier shift in Lithuanian

airy farms. 

The general trends indicated by the ECDFs can be represented

y exact values by comparing the mean values of different coeffi-

ients across the farm types in Table 4 , which presents the main

istributional characteristics for the smooth coefficients. 24 For in-

tance, the mean value of β0 is almost twofold for the mixed

arms, compared with specialised ones. However, the signs of the

oefficients coincide across the farm types at means and the other

uartiles. 

The distribution of β1 , i.e., distance elasticity with respect to

abour, is much wider for the mixed milk-cattle farms than for

he specialised milk farms. Therefore, the mixed milk-cattle farms

end to show different levels of labour productivity, whereas the

pecialised farms show more homogeneous estimates. The distri-
inear functions of data, the distributions of these estimates might be far away from 

ormal distributions. Therefore, it is recommended that we use the bootstrap to 

ompute the standard errors of the mean and quartiles. For further details about 

ootstrap, see Cameron and Trivedi (2005 , Chapter 11). 
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Fig. 3. ECDF plots of the smooth coefficients. 

Table 4 

Summary statistics of the smooth coefficients. 

β0 β1 β2 β3 β4 β5 γ 1 γ 2 ϕ1 ϕ2 ϕ3 

TC Labour Herd Intermediate Assets UAA Milk Other HHI Support Age 

size consumption output outputs payments 

Full sample 

Mean 0.0189 0.0355 0.6080 0.1912 0.0245 0.1408 −0.7519 −0.2481 0.0218 −0.0164 −0.0002 

(0.0009) (0.0012) (0.0133) (0.0048) (0.0012) (0.0035) (0.0170) (0.0058) (0.0035) (0.0016) (0.0001) 

Q1 −0.0116 0.0118 0.5865 0.1540 0.0087 0.0978 −0.8045 −0.2785 −0.1187 −0.0708 −0.0036 

(0.0004) (0.0005) (0.0008) (0.0006) (0.0003) (0.0014) (0.1093) (0.0235) (0.0016) (0.0022) (0.0000) 

Q2 0.0306 0.0282 0.6143 0.1840 0.0365 0.1341 −0.7606 −0.2394 0.0003 −0.0416 −0.0002 

(0.0019) (0.0004) (0.0009) (0.0009) (0.0008) (0.0009) (0.0011) (0.0012) (0.0044) (0.0017) (0.0001) 

Q3 0.0460 0.0504 0.6512 0.2136 0.0509 0.1813 −0.7215 −0.1955 0.1448 0.0429 0.0024 

(0.0007) (0.0014) (0.0815) (0.0342) (0.0012) (0.0178) (0.0007) (0.0007) (0.0010) (0.0014) (0.0000) 

Type = Milk 

Mean 0.0182 0.0310 0.6210 0.1796 0.0286 0.1397 −0.7656 −0.2344 0.0198 −0.0113 −0.0005 

(0.0008) (0.0010) (0.0151) (0.0042) (0.0011) (0.0037) (0.0186) (0.0057) (0.0036) (0.0016) (0.0001) 

Q1 −0.0114 0.0118 0.5917 0.1525 0.0144 0.0981 −0.8065 −0.2724 −0.1228 −0.0629 −0.0036 

(0.0005) (0.0004) (0.0009) (0.0006) (0.0004) (0.0014) (0.0967) (0.0314) (0.0015) (0.0021) (0.0000) 

Q2 0.0306 0.0272 0.6179 0.1809 0.0378 0.1345 −0.7639 −0.2361 −0.0047 −0.0372 −0.0005 

(0.0021) (0.0005) (0.0010) (0.0008) (0.0008) (0.0009) (0.0010) (0.0013) (0.0043) (0.0016) (0.0002) 

Q3 0.0452 0.0455 0.6538 0.2099 0.0515 0.1805 −0.7276 −0.1935 0.1453 0.0472 0.0022 

(0.0004) (0.0015) (0.0989) (0.0314) (0.0017) (0.0200) (0.0006) (0.0007) (0.0010) (0.0024) (0.0000) 

Type = Milk Cattle 

Mean 0.0251 0.0786 0.4821 0.3036 −0.0152 0.1510 −0.6199 −0.3801 0.0420 −0.0653 0.0026 

(0.0040) (0.0081) (0.0381) (0.0263) (0.0070) (0.0140) (0.0448) (0.0300) (0.0154) (0.0073) (0.0006) 

Q1 −0.0153 0.0139 0.4122 0.1936 −0.0464 0.0913 −0.7830 −0.5198 −0.1003 −0.0924 −0.0027 

(0.0011) (0.0052) (0.0016) (0.0075) (0.0025) (0.0043) (0.3521) (0.1650) (0.0054) (0.0155) (0.0007) 

Q2 0.0350 0.0794 0.5476 0.2591 0.0154 0.1327 −0.6274 −0.3726 0.0654 −0.0623 0.0016 

(0.0039) (0.0058) (0.0164) (0.0042) (0.0055) (0.0036) (0.0152) (0.0145) (0.0159) (0.0024) (0.0003) 

Q3 0.0547 0.1351 0.5911 0.3797 0.0432 0.2021 −0.4802 −0.2170 0.1421 −0.0359 0.0041 

(0.0054) (0.0121) (0.2406) (0.1358) (0.0073) (0.0555) (0.0103) (0.0134) (0.0102) (0.0015) (0.0002) 

Bootstrapped standard errors are in the parentheses. 
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t  
ution of β2 , i.e., distance elasticity with respect to herd size, for

he specialised farms dominates that for the mixed farms. The

ixed farms show higher mass of relatively low values of elas-

icity, as suggested by Table 4 . This indicates that the specialised

ilk farms enjoy higher productivity of the herd than the mixed

arms. Turning to β3 —elasticities for intermediate consumption—

he coefficients for milk farms, once again, are much less variable

han those for the milk-cattle farm type. The milk-cattle farm type

xhibits wider distribution of the regression coefficients, hence

istance elasticities. Furthermore, the mixed farm type first-order

tochastically dominates the specialised farms in terms of β3 . In

erms of β4 ; that is, regression coefficients associated with asset

se, the lower estimates are more likely to be observed for the

ixed farms. The distributions virtually coincide for the higher

alues of β4 . The elasticities with respect to UAA are virtually

he same across the two farming types as represented by the

mpirical distributions of β5 . This suggests similar levels of the

tilisation of the UAA whether it is used for milk or beef cat-
le. The elasticity is positive across all quartiles. Thus, in gen-

ral, there exists no excessive use of UAA in Lithuanian dairy

arms. 

The coefficients, γ ’s, can be interpreted as the distance elastic-

ties with respect to outputs. Alternatively, −γq shows the percent

ncrease in the input quantity of X 1 (the numeraire input) due to

 1 percent increase in the production of Y q , ∀ q = 1 , 2 ( Kumbhakar

 Sun, 2012 ). As suggested by Fig. 3 , the milk farms have more

egative values of γ 1 than milk-cattle farms. The opposite holds

or γ 2 . This indicates that milk farms tend to put relatively more

esources than milk-cattle farms into production of one additional

ercent of milk output. Therefore, the quality of the outputs might

ary across specialised and mixed farms due to different input in-

ensity. This also partially explains the effect of the diversification

as represented by the marginal effects of the HHI) on the effi-

iency levels: specialised farms are more input-intensive and tend

o generate higher efficiency. Finally, ϕp indicates the elasticities of

he IDF with respect to the contextual variables, Z . These elastici-
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Table 5 

Summary statistics of the time derivatives of the smooth coefficients. 

∂β0 

∂t 
∂β1 

∂t 
∂β2 

∂t 
∂β3 

∂t 
∂β4 

∂t 
∂β5 

∂t 
∂γ1 

∂t 
∂γ2 

∂t 
∂ϕ 1 
∂t 

∂ϕ 2 
∂t 

∂ϕ 3 
∂t 

TC Labour Herd Intermediate Assets UAA Milk Other HHI Support Age 

size consumption output outputs payments 

Full sample 

Mean −0.0074 −0.0036 −0.0003 0.0004 0.0046 −0.0010 −0.0027 0.0027 0.0225 0.0024 −0.0002 

(0.0006) (0.0010) (0.0016) (0.0014) (0.0010) (0.0018) (0.0009) (0.0009) (0.0031) (0.0015) (0.0001) 

Q1 −0.0307 −0.0225 −0.0388 −0.0396 −0.0304 −0.0476 −0.0344 −0.0314 −0.1024 −0.0268 −0.0024 

(0.0002) (0.0008) (0.0026) (0.0013) (0.0003) (0.0016) (0.0005) (0.0006) (0.0005) (0.0012) (0.0001) 

Q2 −0.0033 −0.0068 −0.0015 0.0047 0.0151 0.0064 −0.0006 0.0006 0.0672 −0.0062 −0.0004 

(0.0005) (0.0004) (0.0012) (0.0011) (0.0009) (0.0014) (0.0012) (0.0012) (0.0028) (0.0012) (0.0000) 

Q3 0.0129 0.0141 0.0258 0.0367 0.0389 0.0482 0.0314 0.0344 0.1217 0.0233 0.0015 

(0.0005) (0.0004) (0.0007) (0.0015) (0.0010) (0.0013) (0.0006) (0.0005) (0.0021) (0.0010) (0.0000) 

Type = Milk 

Mean −0.0066 −0.0026 0.0002 0.0002 0.0047 −0.0025 −0.0015 0.0015 0.0177 0.0034 −0.0002 

(0.0006) (0.0008) (0.0014) (0.0012) (0.0010) (0.0015) (0.0009) (0.0009) (0.0031) (0.0015) (0.0001) 

Q1 −0.0300 −0.0217 −0.0361 −0.0386 −0.0296 −0.0490 −0.0320 −0.0316 −0.1073 −0.0256 −0.0023 

(0.0002) (0.0008) (0.0025) (0.0016) (0.0003) (0.0017) (0.0005) (0.0005) (0.0005) (0.0012) (0.0001) 

Q2 −0.0032 −0.0066 0.0008 0.0042 0.0156 0.0047 0.0010 −0.0010 0.0646 −0.0055 −0.0004 

(0.0005) (0.0004) (0.0011) (0.0012) (0.0009) (0.0018) (0.0013) (0.0013) (0.0030) (0.0013) (0.0000) 

Q3 0.0127 0.0129 0.0251 0.0354 0.0389 0.0474 0.0316 0.0320 0.1205 0.0232 0.0014 

(0.0006) (0.0003) (0.0007) (0.0015) (0.0010) (0.0012) (0.0005) (0.0005) (0.0021) (0.0010) (0.0000) 

Type = Milk Cattle 

Mean −0.0153 −0.0135 −0.0048 0.0019 0.0036 0.0128 −0.0138 0.0138 0.0686 −0.0076 −0.0002 

(0.0039) (0.0069) (0.0108) (0.0078) (0.0043) (0.0121) (0.0041) (0.0040) (0.0126) (0.0066) (0.0004) 

Q1 −0.0398 −0.0489 −0.0638 −0.0600 −0.0386 −0.0091 −0.0474 −0.0225 0.0002 −0.0495 −0.0032 

(0.0038) (0.0034) (0.0069) (0.0033) (0.0037) (0.0037) (0.0029) (0.0049) (0.0063) (0.0052) (0.0003) 

Q2 −0.0065 −0.0098 −0.0246 0.0240 0.0113 0.0196 −0.0108 0.0108 0.0835 −0.0145 −0.0003 

(0.0019) (0.0036) (0.0043) (0.0067) (0.0065) (0.0025) (0.0026) (0.0027) (0.0068) (0.0034) (0.0002) 

Q3 0.0136 0.0354 0.0408 0.0656 0.0380 0.0636 0.0225 0.0474 0.1478 0.0233 0.0033 

(0.0021) (0.0047) (0.0049) (0.0048) (0.0028) (0.0083) (0.0049) (0.0028) (0.0172) (0.0037) (0.0005) 

Bootstrapped standard errors are in the parentheses. 
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25 The FADN involves a representative survey based on the random sampling. 

Thus, each observation represents a certain number of farms in Lithuania. We use 

these numbers (normalised by their sum) as weights for constructing the weighted 

averages. Weights are used in this section instead of other sections for ease of plot- 

ting TFP growth and its components over time. Note that the plots are similar if we 
ies capture the effects of HHI ( Z 1 ), log of support payments ( Z 2 ),

nd farmer’s age ( Z 3 ) on the growth of the distance function. If ϕp 

s positive (negative), then it means that an increase in the growth

f any of these variables, ceteris paribus , would increase (decrease)

he rate of change of the distance from the producer to the

rontier. 

In general, the dispersion of regression coefficients in the mixed

arms can be related to different productivity levels associated

ith different production processes and products produced there,

n contrast to single product and production technology prevail-

ng in the specialised milk farms. The dominance of one farm type

ver the other varies across the regression coefficients. Therefore,

he contributions of different factor inputs to generations of the

utputs vary across the farming types. 

The dynamic setting used for estimation of TFP allows us to cal-

ulate the derivatives of the regression coefficients with respect to

ime ( Table 5 ). As Kumbhakar and Sun (2012) put it, these deriva-

ives allow us to find out whether TC is biased towards certain in-

uts or outputs. The smooth coefficient model, in this case, pro-

uces the observation-specific measures of the bias in TC. It can

e seen that TC is likely to slow down over time as the deriva-

ive associated with β0 is slightly negative at the means and me-

ians (Q2) for both farming types. As regards the input bias in

C, the divergent directions are observed across the five inputs.

ore specifically, TC for most of the farms are found to be labour-

aving, given the significantly negative derivative at the median as-

ociated with β1 ; and intermediate-consumption- and asset-using,

iven the significantly positive derivatives at the medians associ-

ted with β3 and β4 , respectively. These suggest that traditional

nputs are becoming relatively less important than those related

o input-intensive technologies. The intermediate consumption and

ssets might become the limiting factors if farming revenue does

ot allow expanding their inflow. These effects are positive and

ignificant at the 10% level at the medians for both types of

arming. 
u
These results can be indirectly compared with similar stud-

es in other European countries. For instance, Mennig and

auer (2019) reported land-saving, intermediate-consumption- 

aving, capital-using and livestock-using TC for German dairy farms

uring 2006–2011. Similar results were reported by Skevas, Em-

alomatis, and Brümmer (2018b) for German dairy farms during

0 01–20 09. Compared with our result, the capital-using TC was

btained in both cases, yet intermediate-consumption-using TC is

nly observed for Lithuania. This suggests that modernisation of

airy farming involving more intensive farming practices are still

mportant in Lithuania. 

Finally, the signs of the derivatives associated with the output

oefficients indicate scale bias in TC. As regards the milk output,

erivative of the associated coefficient γ 1 is not significant at the

edian for milk farms, yet it is significantly negative at the median

or milk-cattle farms. This indicates that most milk-cattle farms are

perating above their efficient scale for producing milk. As regards

erivative of γ 2 at the median, no significant conclusions can be

dentified for the milk farms, whereas most milk-cattle farms are

perating below their efficient scale for producing other outputs. 

.2.2. Decomposition of TFP growth 

To examine the temporal behaviour of TFP growth and its com-

onents, Fig. 4 plots the weighted average of TFP growth ( Baltagi

 Griffin, 1988 ) and its components over time where the weights

re taken from the FADN. 25 These growth rates are used to de-

ne their respective indices from I t = I t−1 (1 + 

˙ I t ) , where I is either

FP or one of its components, and I 2004 = 100 . A positive (nega-
se simple averages instead. 
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Table 6 

Summary statistics of TFP growth and its components. 

TC Scale Allocative External EC Residual TFP Growth 

Full sample 

Mean 0.0189 0.0181 −0.0158 −0.0002 −0.0011 0.0005 0.0203 

(0.0009) (0.0023) (0.0023) (0.0006) (0.0000) (0.0029) (0.0046) 

Q1 −0.0116 −0.0299 −0.0613 −0.0135 −0.0014 −0.0760 −0.1011 

(0.0004) (0.0014) (0.0015) (0.0004) (0.0001) (0.0023) (0.0033) 

Q2 0.0306 0.0050 −0.0072 −0.0004 −0.0009 0.0004 0.0199 

(0.0019) (0.0009) (0.0015) (0.0004) (0.0000) (0.0017) (0.0040) 

Q3 0.0460 0.0562 0.0433 0.0130 −0.0006 0.0776 0.1430 

(0.0007) (0.0016) (0.0017) (0.0004) (0.0000) (0.0022) (0.0041) 

Type = Milk 

Mean 0.0182 0.0140 −0.0173 0.0007 −0.0011 0.0031 0.0176 

(0.0008) (0.0021) (0.0025) (0.0006) (0.0000) (0.0029) (0.0045) 

Q1 −0.0114 −0.0277 −0.0616 −0.0120 −0.0014 −0.0720 −0.1008 

(0.0005) (0.0016) (0.0018) (0.0004) (0.0001) (0.0024) (0.0033) 

Q2 0.0306 0.0039 −0.0087 0.0006 −0.0009 0.0028 0.0185 

(0.0021) (0.0008) (0.0015) (0.0004) (0.0000) (0.0019) (0.0040) 

Q3 0.0452 0.0506 0.0403 0.0133 −0.0006 0.0776 0.1383 

(0.0004) (0.0015) (0.0016) (0.0004) (0.0000) (0.0023) (0.0039) 

Type = Milk Cattle 

Mean 0.0251 0.0582 −0.0011 −0.0097 −0.0010 −0.0243 0.0471 

(0.0040) (0.0150) (0.0090) (0.0028) (0.0001) (0.0126) (0.0220) 

Q1 −0.0153 −0.0605 −0.0442 −0.0247 −0.0012 −0.1279 −0.1135 

(0.0011) (0.0062) (0.0061) (0.0023) (0.0004) (0.0137) (0.0197) 

Q2 0.0350 0.0329 0.0104 −0.0102 −0.0008 −0.0355 0.0403 

(0.0039) (0.0077) (0.0053) (0.0012) (0.0000) (0.0085) (0.0161) 

Q3 0.0547 0.1416 0.0725 0.0065 −0.0006 0.0758 0.2135 

(0.0054) (0.0106) (0.0103) (0.0019) (0.0000) (0.0076) (0.0220) 

Bootstrapped standard errors are in the parentheses. 

Fig. 4. TFP growth and its components. 

 

 

 

 

 

 

 

 

 

Fig. 5. TFP index and its components. 
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tive) growth rate in year t indicates that the corresponding index

would rise (fall) from year t − 1 to year t . For example, TFP growth

is rather negative in year 2009 due to the EU dairy market crisis,

and therefore the TFP index falls in year 2009 based on the previ-

ous year. Thus, these indices reveal the temporal behavior of TFP

growth and its components. 

In Fig. 5 , TFP index suggests an appreciable productivity growth

from the years 2006 to 2008. Then there is a sharp decline of

productivity growth in 2009 before gradual recovery. The TFP in-

dex shows a more uneven trend than the other indices. It is clear
rom this figure that (1) the TC and scale components make the

argest positive contribution to TFP growth, (2) the effects of EC,

nd external and residual components are relatively negligible, and

3) the allocative component contributes negatively to TFP growth.

hese results confirm the summary statistics reported in Table 6 .

ote that the values of TFP growth and its components vary across

he quartiles so that the first and third ones often show different

igns. Therefore, Lithuanian dairy farms are diverse in terms of the

nderlying TFP growth paths. 
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Table A.1 

Determinants of the transient inefficiency. 

Farm type effects Region effects 

Coef. Std. Err. Coef. Std. Err. 

μ( Z , t ) 

Intercept −0.0570 0.1016 −0.0588 ∗ 0.0357 

HHI −0.0196 0.0406 −0.0135 0.0125 

Support payments 0.0046 0.0100 0.0065 ∗ 0.0034 

Farmer’s age 0.0005 ∗ 0.0003 0.0001 0.0002 

Time trend 0.0005 0.0021 0.0009 0.0009 

σ u ( Z , t ) 

Intercept −3.6559 ∗∗∗ 0.5659 −3.4335 ∗∗∗ 0.5138 

HHI −0.1549 0.2788 −0.0865 0.2521 

Support payments 0.1290 ∗∗ 0.0559 0.1329 ∗∗∗ 0.0493 

Farmer’s age −0.0075 ∗∗ 0.0038 −0.0080 ∗∗ 0.0039 

Time trend 0.0255 ∗ 0.0146 0.0212 0.0142 

1. Z variables are described in Section 4 . 2. ∗ , ∗∗ and ∗∗∗ indicate significance at 

the level of 10%, 5% and 1%, respectively. 
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The slight decline in TFP index in 2006 can be related to the

rought and the subsequent decrease in the feed supply. Year 2009

arked the turmoil in the EU dairy market amidst the global eco-

omic crisis. Similar effects were also reported by Mennig and

auer (2019) . This causes decrease in milk prices with subsequent

eduction of milk supply and herd size, and leads to allocative

nefficiency as evidenced by large negative shift in the allocative

omponent of TFP growth in Fig. 4 and TFP index in Fig. 5 . The

ecline in TFP post-2015 can be related to the Russian embargo

hich induces similar processes as in 2009. The decrease in the

erd size affects the input structure and may have negative ef-

ect in the subsequent time periods due to inefficient use of the

emaining resources and adjustment costs. The scale component

emains the driving force, whereas the TC shows slight decline

ost-2012. 

. Conclusions 

In this paper, we consider the semi/nonparametric analysis of

echnical inefficiency and TFP growth. To facilitate the analysis,

e apply the general additive and SF models to extract the per-

istent and transient technical inefficiencies under the unknown

unctional form of the IDF. We allow both the mean and stan-

ard deviation of the transient inefficiency distribution to be de-

endent on the contextual variables. The smooth coefficient model

s then applied in a dynamic setting to estimate and decompose

FP growth. The proposed methodology renders a highly flexible

epresentation of the production technology and meaningful re-

ression coefficients that can be interpreted in line with economic

heory. 

The empirical application focuses on Lithuanian dairy farms.

ore specifically, specialised milk farms and mixed milk-cattle

arms are considered in the analysis. The performance gap between

he two types of farms persists during 2004–2016, yet its magni-

ude is rather limited as the mean TTE score is 0.95, whereas the

ean PTE score is 0.97. 

The estimation of the smooth coefficient model sheds some

ight on the underlying technology and TFP growth. First, that

he TC biases towards intermediate consumption and assets indi-

ates the increasing spread of more intensive farming requiring

igher level of modernisation. Lithuanian dairy farms maintained

FP growth of 2% per annum on average during 2004–2016, and

uch of it is attributed to the TC and scale components. How-

ver, TC shows a downward trend post-2012 which calls for tech-

ical innovations in the sector. Among other reasons, the input

rice growth rates exceeding those of the output prices may ex-

lain slowdown of the TC when monetary variables are involved

n the analysis ( Kumbhakar, Lien, Flaten, & Tveterås, 2008 ). The

cale component indicates that higher market integration is likely

o help Lithuanian farms to further improve their TFP by adjust-

ng their production structure. Therefore, both technological and

anagerial innovations are needed to maintain the growth of TFP

midst the economic fluctuations rendered by the geopolitical con-

itions (e.g., Russian embargo; see Kutlina-Dimitrova, 2017 ) in Cen-

ral and Eastern Europe. 

The average annual growth in TFP for Lithuanian dairy farms

btained in this study is comparable to similar research in

he other European countries. For instance, Mennig and Sauer

2019) applied SF analysis and obtained a TFP growth rate of 2.2%

or German dairy farms. Skevas et al. (2018b) applied several SF

odels and obtained annual growth rates of around 1.7% (with ad-

itional case of -1% when trend is assumed to impact the ineffi-

iency). In these two studies, TC appeared as the prevailing com-

onent behind TFP growth. Sipiläinen et al. (2013) reported 2.8%

or Finnish dairy farms. Turning to nonparametric analysis, Madau,

uresi, and Pulina (2017) reported an average annual TFP growth
ate of about 1% for the EU dairy farms. Depending on the farm

ize, Keizer and Emvalomatis (2014) obtained the average annual

ates of TFP growth bounded between 0.4% and 2% for Dutch dairy

arms. 

We observe positive impacts of diversification on TC, one of the

ost important sources of TFP growth. This implies that public

upport (e.g., the CAP measures) should seek to promote diver-

ification of production. To this end, measures for modernisation

i.e., investment support) and supply chain improvement (e.g., Ru-

al Development Programme measures) can be designed and im-

lemented. Indeed, these measures allow farmers to expand the

cope of production by acquiring new equipment. Furthermore,

hey can embark on direct sales of processed products produced on

arm, and thus generate higher profit margins ( Ventura & Milone,

0 0 0 ). 

Future studies could include estimation of alternative represen-

ations of production technology within the current econometric

odelling framework. Alternatively, different farming types may be

overed to gain more insights into the possible development paths

or the agricultural sector. 
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ppendix A. Alternative specifications of the determinants of 

ransient inefficiency 

In addition to the baseline results of determinants of the tran-

ient inefficiency reported in Table 3 , we also provide in Table A.1

nd Fig. A.1 the estimation results of two alternative specifica-

ions of the determinants of transient inefficiency. The first alter-

ative specification controls for farm type, and the second alter-

ative controls for farm type as well as regional dummies repre-

enting the ten counties in Lithuania. It can be seen that adding

hese additional dummies into μ( Z , t ) and σ u ( Z , t ) does not change

he signs of the variables used in the baseline specification, i.e.,

HI, support payments, farmer’s age, and time trend. Furthermore,

he associated transient TE scores from the baseline specification

n Fig. 1 are quite close to those from the alternative specifications

https://doi.org/10.13039/501100004895
https://doi.org/10.13039/501100001809
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Fig. A.1. Transient TE scores under alternative specifications. 

Table B.1 

Determinants of the transient inefficiency. 

Level Per hectare 

Coef. Std. Err. Coef. Std. Err. 

μ( Z , t ) 

Intercept −0.0115 0.0121 −0.0031 0.0168 

HHI −0.0032 0.0189 0.0149 0.0150 

Support payments 0.0001 0.0004 −0.0001 ∗∗∗ 0.00004 

Farmer’s age 0.0002 0.0002 0.0005 ∗∗∗ 0.0001 

Time trend 0.00004 0.0002 0.0048 ∗∗∗ 0.0008 

σ u ( Z , t ) 

Intercept 0.0026 7.5627 −0.3308 0.6948 

HHI 0.0050 4.0467 −0.6054 0.4815 

Support payments −0.0494 0.4183 0.0202 ∗∗∗ 0.0012 

Farmer’s age −0.1195 ∗∗ 0.0587 −0.0738 ∗∗∗ 0.0073 

Time trend −0.0276 0.0967 −0.6594 ∗∗∗ 0.0499 

1. Farm type and regional dummies are included. 2. In the level model, support 

payments are measured in thousand EUR. 3. ∗ , ∗∗ and ∗∗∗ indicate significance 

at the level of 10%, 5% and 1%, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C.1 

Descriptive statistics of the variables for estimating (19). 

Full sample Type = Milk Type = Milk Cattle 

Labour ( X 1 ), hours 

Mean 6365.01 6485.64 5195.88 

SD 5844.36 6070.35 2569.47 

Min 1350.00 1350.00 2030.00 

Max 93544.00 93544.00 14704.00 

Herd size ( X 2 ), LSU 

Mean 67.07 67.71 60.88 

SD 79.34 81.19 58.30 

Min 2.75 2.75 4.62 

Max 800.77 800.77 269.46 

Intermediate consumption ( X 3 ), index 

Mean 59199.71 61110.72 40678.46 

SD 95974.48 99543.84 45650.56 

Min 2808.51 2808.51 4742.02 

Max 1684415.29 1684415.29 242979.70 

Assets ( X 4 ), index 

Mean 92141.13 95264.28 61871.94 

SD 136481.90 140819.72 77441.88 

Min 1333.69 1333.69 2314.96 

Max 1150755.95 1150755.95 510487.32 

Utilised agricultural area ( X 5 ), hectare 

Mean 100.20 100.72 95.15 

SD 104.25 106.51 79.07 

Min 2.17 2.17 4.40 

Max 956.77 956.77 386.95 

Milk output ( Y 1 ), ton 

Mean 236.87 251.83 91.88 

SD 345.82 357.35 133.94 

Min 2.16 7.53 2.16 

Max 4867.88 4867.88 704.50 

Other outputs ( Y 2 ), index 

Mean 44901.00 45020.00 43747.68 

SD 71644.37 73654.61 48111.12 

Min 98.19 98.19 4220.02 

Max 1004395.41 1004395.41 262848.28 

Labour price ( W 1 ), EUR/hour 

Mean 2.16 2.17 2.09 

SD 0.61 0.62 0.52 

Min 0.89 0.89 0.95 

Max 6.76 6.76 3.64 

Herd price ( W 2 ), EUR/LSU 

Mean 514.69 526.11 403.97 

SD 188.64 190.93 117.06 

Min 129.96 146.61 129.96 

Max 2148.36 2148.36 811.24 

Intermediate consumption price ( W 3 ), index 

Mean 1.09 1.09 1.08 

( continued on next page ) 
in Fig. A.1 ; that is, they are all slightly skewed to the left, with a

mean of 0.95. 

Appendix B. Estimation of (6) with alternative measures of 

support payments 

In addition to the baseline results of determinants of the tran-

sient inefficiency reported in Table 3 , we also provide in Table B.1

the estimation results using two alternative measures of subsidies,

i.e., support payments in level, and support payments per hectare.

In the level model, the coefficient of support payments in μ( Z , t ) is

positive, but both coefficients of support payments in μ( Z , t ) and

σ u ( Z , t ) are insignificant at the 10% level. In the per hectare model,

the coefficient of support payments in σ u ( Z , t ) is positive, and both

coefficients of support payments in μ( Z , t ) and σ u ( Z , t ) are signifi-

cant at the 1% level. 

Appendix C. Descriptive statistics of the variables for 

estimating (19) 

In (19), growth rates are computed via first-order log differ-

ences. Those farms observed for only one year, therefore, are re-

moved. Table C.1 presents the descriptive statistics of the variables

used to estimate (19). 
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Table C.1 ( continued ) 

Full sample Type = Milk Type = Milk Cattle 

SD 0.14 0.14 0.15 

Min 0.77 0.77 0.77 

Max 1.26 1.26 1.26 

Assets price ( W 4 ), EUR 

Mean 0.26 0.26 0.28 

SD 0.12 0.12 0.12 

Min 0.03 0.03 0.06 

Max 0.63 0.62 0.63 

Land price ( W 5 ), EUR/hectare 

Mean 15.10 15.28 13.38 

SD 13.61 13.72 12.39 

Min 0.05 0.05 0.15 

Max 126.41 126.41 56.96 

Milk price ( P 1 ), EUR/ton 

Mean 240.14 242.73 215.04 

SD 56.28 55.77 55.20 

Min 86.89 86.89 110.05 

Max 434.43 434.43 367.82 

Other outputs’ price ( P 2 ), index 

Mean 1.00 1.00 0.99 

SD 0.03 0.04 0.02 

Min 0.93 0.93 0.95 

Max 2.41 2.41 1.06 

HHI ( Z 1 ) 

Mean 0.68 0.70 0.52 

SD 0.20 0.19 0.19 

Min 0.17 0.21 0.17 

Max 1.00 1.00 1.00 

Support payments in log ( Z 2 ) 

Mean 9.53 9.51 9.69 

SD 1.03 1.04 0.94 

Min 6.34 6.34 7.36 

Max 12.59 12.59 11.60 

Farmer’s age ( Z 3 ), years 

Mean 47.88 48.05 46.26 

SD 9.95 9.92 10.19 

Min 21.00 22.00 21.00 

Max 75.00 75.00 74.00 

Time trend ( t ) 

Mean 8.43 8.47 8.07 

SD 3.14 3.13 3.19 

Min 2.00 2.00 2.00 

Max 13.00 13.00 13.00 

1. Total number of observations = 1978. 2. t is defined as year- 

2003, where year varies from 2005 to 2016. 
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